Lecture 6 2021/2022 Microwave Devices and Circuits for Radiocommunications

2021/2022

- 2C/1L, MDCR
- <u>Attendance at minimum 7 sessions (course +</u> <u>laboratory)</u>
- Lectures- associate professor Radu Damian
 - Monday 11-13, P8, Microsoft Teams
 - E 50% final grade, room?
 - problems + (2p atten. lect.) + (3 tests) + (bonus activity)
 - first test L2: 28.02.2022 (t2 and t3 not announced)
 - 3p=+0.5p
 - all materials/equipments authorized

2021/2022

- Laboratory associate professor Radu Damian
 - Thursday 16-18, II.13
 - Friday 8-12, II.13, odd week
 - L 25% final grade
 - ADS, 4 sessions
 - Attendance + personal results
 - P 25% final grade
 - ADS, 3 sessions (-1? 25.02.2022)
 - personal homework

Materials

RF-OPTO

- http://rf-opto.etti.tuiasi.ro
- David Pozar, "Microwave Engineering", Wiley; 4th edition, 2011

Photos

- sent by email/online exam
- used at lectures/laboratory

Profile photo

Profile photo – online "exam"

Examene online: 2020/2021

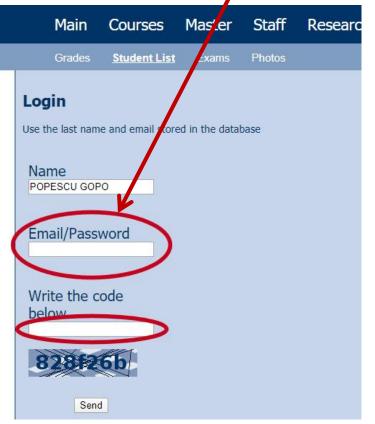
Disciplina: MDC (Microwave Devices and Circuits (Engleza))

Pas 3

Nr.	Titlu	Start	Stop	Text
1	Profile photos	03/03/2021; 10:00	08/04/2021; 08:00	Online "exam" created f .
2	Mini Test 1 (lecture 2)	03/03/2021; 15:35	03/03/2021; 15:50	The current test consis

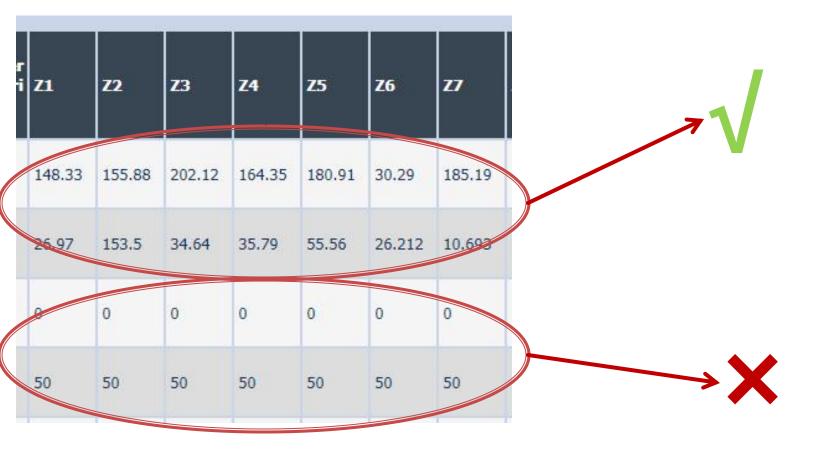
Online

access to online exams requires the password received by email



Online results submission

many numerical values



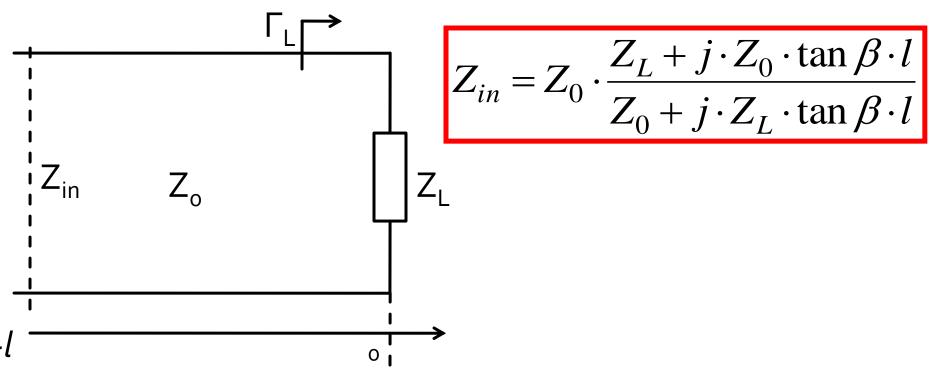
Online results submission

Grade = Quality of the work + + Quality of the submission

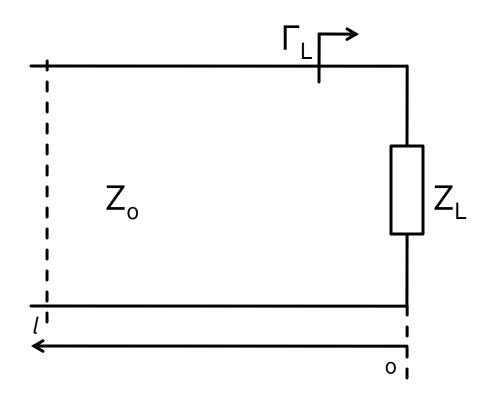
Important

The lossless line

 input impedance of a length *l* of transmission line with characteristic impedance *Z_o*, loaded with an arbitrary impedance *Z_L*



The lossless line



$$V(z) = V_0^+ e^{-j \cdot \beta \cdot z} + V_0^- e^{j \cdot \beta \cdot z}$$
$$I(z) = \frac{V_0^+}{Z_0} e^{-j \cdot \beta \cdot z} - \frac{V_0^-}{Z_0} e^{j \cdot \beta \cdot z}$$
$$Z_L = \frac{V(0)}{I(0)} \qquad Z_L = \frac{V_0^+ + V_0^-}{V_0^+ - V_0^-} \cdot Z_0$$

 voltage reflection coefficient

$$\Gamma = \frac{V_0^-}{V_0^+} = \frac{Z_L - Z_0}{Z_L + Z_0}$$

Z_o real

The lossless line

$$V(z) = V_0^+ \cdot \left(e^{-j \cdot \beta \cdot z} + \Gamma \cdot e^{j \cdot \beta \cdot z} \right) \qquad \qquad I(z) = \frac{V_0^+}{Z_0} \cdot \left(e^{-j \cdot \beta \cdot z} - \Gamma \cdot e^{j \cdot \beta \cdot z} \right)$$

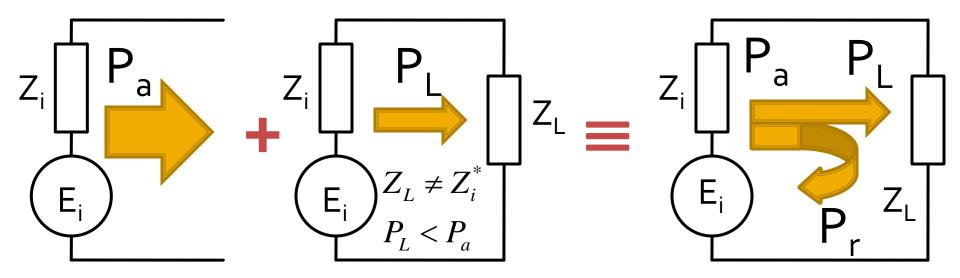
time-average Power flow along the line

$$P_{avg} = \frac{1}{2} \cdot \operatorname{Re}\left\{V(z) \cdot I(z)^{*}\right\} = \frac{1}{2} \cdot \frac{\left|V_{0}^{+}\right|^{2}}{Z_{0}} \cdot \operatorname{Re}\left\{1 - \Gamma^{*} \cdot e^{-2j \cdot \beta \cdot z} + \Gamma \cdot e^{2j \cdot \beta \cdot z} - \left|\Gamma\right|^{2}\right\}$$

$$P_{avg} = \frac{1}{2} \cdot \frac{\left|V_{0}^{+}\right|^{2}}{Z_{0}} \cdot \left(1 - \left|\Gamma\right|^{2}\right)$$

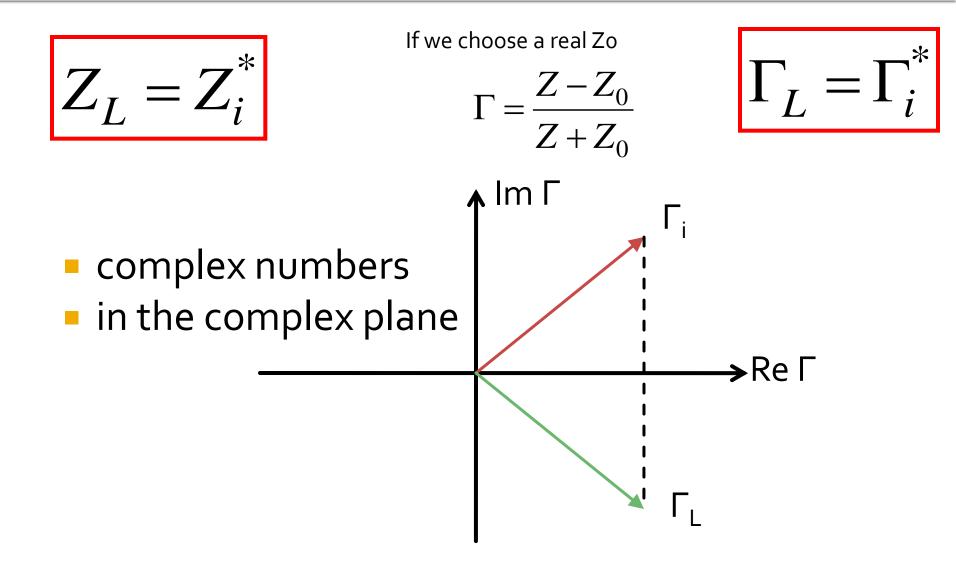
- Total power delivered to the load = Incident power – "Reflected" power
 Return "Loss" [dB]
- Return "Loss" [dB] $RL = -20 \cdot \log |\Gamma|$ [dB]

Reflection and power / Model

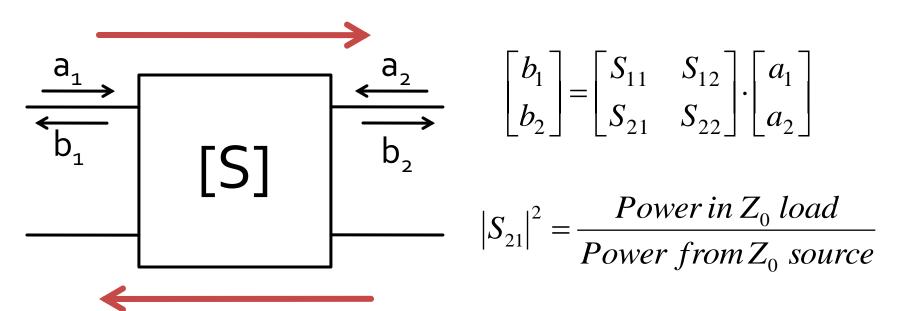


- The source has the ability to sent to the load a certain maximum power (available power) P_a
- For a particular load the power sent to the load is less than the maximum (mismatch) P_L < P_a
- The phenomenon is "as if" (model) some of the power is reflected P_r = P_a P_L
- The power is a scalar !

Matching , from the point of view of power transmission



Scattering matrix – S



- a,b
 - information about signal power AND signal phase
- S_{ii}
 - network effect (gain) over signal power including phase information

Power dividers and directional couplers

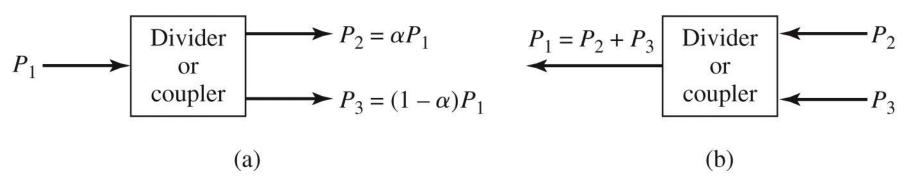
Course Topics

- Transmission lines
- Impedance matching and tuning
- Directional couplers
- Power dividers
- Microwave amplifier design
- Microwave filters
- Oscillators and mixers

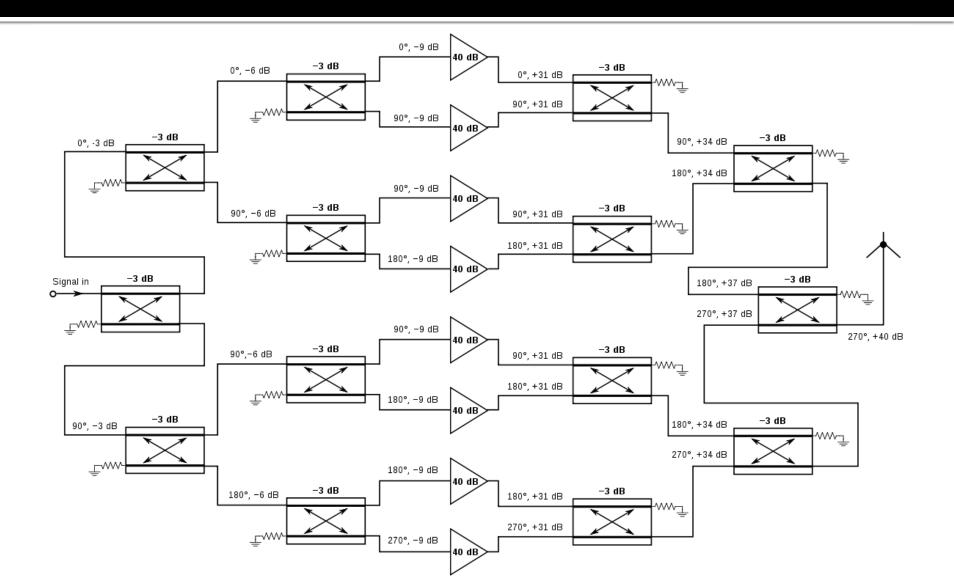
Introduction

Power dividers and couplers

- Desired functionality:
 - division
 - combining
- of signal power

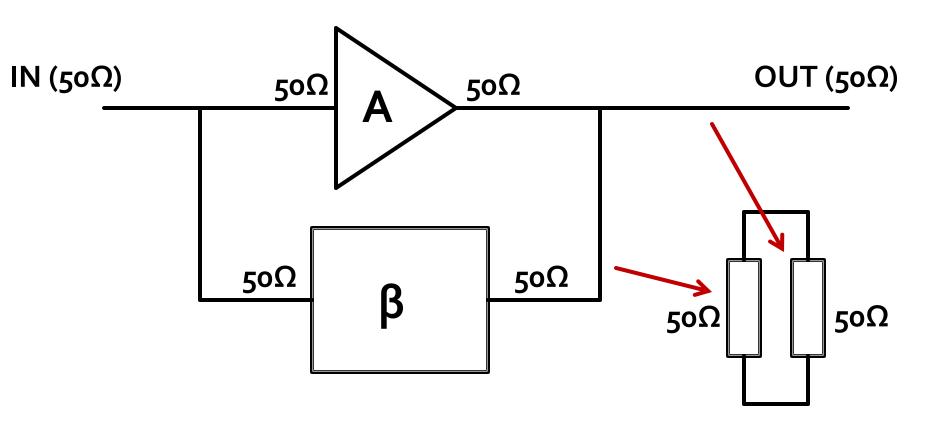


Balanced amplifiers



Matching

feedback amplifier



- also known as T-Junctions
- characterized by a 3x3 **S** matrix $\begin{bmatrix} S_{11} & S_{12} & S_{13} \end{bmatrix}$

$$\begin{bmatrix} S \end{bmatrix} = \begin{bmatrix} S_{21} & S_{22} & S_{23} \\ S_{31} & S_{32} & S_{33} \end{bmatrix}$$

- the device is reciprocal if it does not contain:
 - anisotropic materials (usually ferrites)
 - active circuits
- to avoid power loss, we would like to have a network that is:
 - Iossless, and
 - matched at all ports
 - to avoid reflection power "loss"

reciprocal

$$[S] = [S]^{t} \qquad S_{ij} = S_{ji}, \forall j \neq i$$
$$S_{12} = S_{21}, S_{13} = S_{31}, S_{23} = S_{32}$$

matched at all ports

$$S_{ii} = 0, \forall i$$
 $S_{11} = 0, S_{22} = 0, S_{33} = 0$

then the S matrix is:

$$\begin{bmatrix} S \end{bmatrix} = \begin{bmatrix} 0 & S_{12} & S_{13} \\ S_{12} & 0 & S_{23} \\ S_{13} & S_{23} & 0 \end{bmatrix}$$

- reciprocal, matched at all ports, S matrix: $\begin{bmatrix} S \end{bmatrix} = \begin{bmatrix} 0 & S_{12} & S_{13} \\ S_{12} & 0 & S_{23} \\ S_{12} & S_{22} & 0 \end{bmatrix}$
- Iossless network
 - all the power injected in one port will be found exiting the network on all ports

$$S^{*} \cdot [S]^{t} = [1] \qquad \sum_{k=1}^{N} S_{ki} \cdot S_{kj}^{*} = \delta_{ij}, \forall i, j$$
$$\sum_{k=1}^{N} S_{ki} \cdot S_{ki}^{*} = 1 \qquad \sum_{k=1}^{N} S_{ki} \cdot S_{kj}^{*} = 0, \forall i \neq j$$

- Iossless network $[S] = \begin{bmatrix} 0 & S_{12} & S_{13} \\ S_{12} & 0 & S_{23} \\ S_{13} & S_{23} & 0 \end{bmatrix}$ $\sum_{k=1}^{N} S_{ki} \cdot S_{kj}^{*} = 1$ $\sum_{k=1}^{N} S_{ki} \cdot S_{kj}^{*} = 0, \forall i \neq j$ $S_{ki} \cdot S_{kj}^{*} = 0, \forall i \neq j$
- $|S_{12}|^{2} + |S_{13}|^{2} = 1 \qquad S_{13}^{*}S_{23} = 0$ $|S_{12}|^{2} + |S_{23}|^{2} = 1 \qquad S_{12}^{*}S_{13} = 0$ $|S_{13}|^{2} + |S_{23}|^{2} = 1 \qquad S_{23}^{*}S_{12} = 0$ = no solution is possible

$$\begin{bmatrix} S \end{bmatrix} = \begin{bmatrix} 0 & S_{12} & S_{13} \\ S_{12} & 0 & S_{23} \\ S_{13} & S_{23} & 0 \end{bmatrix}$$

- 6 equations / 3 unknowns
 - no solution is possible
- A three-port network **cannot** be simultaneously:
 - reciprocal
 - Iossless
 - matched at all ports
- If any one of these three conditions is relaxed, then a physically realizable device is possible

Nonreciprocal Three-Port Networks

- usually containing anisotropic materials, ferrites
 nonreciprocal, but matched at all ports and lossless S_{ij} ≠ S_{ji}
- S matrix

$$\begin{bmatrix} S \end{bmatrix} = \begin{bmatrix} 0 & S_{12} & S_{13} \\ S_{21} & 0 & S_{23} \\ S_{31} & S_{32} & 0 \end{bmatrix}$$

6 equations / 6 unknowns

$$|S_{12}|^{2} + |S_{13}|^{2} = 1 \qquad S_{31}^{*}S_{32} = 0$$

$$|S_{21}|^{2} + |S_{23}|^{2} = 1 \qquad S_{21}^{*}S_{23} = 0$$

$$|S_{31}|^{2} + |S_{32}|^{2} = 1 \qquad S_{12}^{*}S_{13} = 0$$

Nonreciprocal Three-Port Networks

- two possible solutionscirculators
 - clockwise circulation

$$S_{12} = S_{23} = S_{31} = 0$$

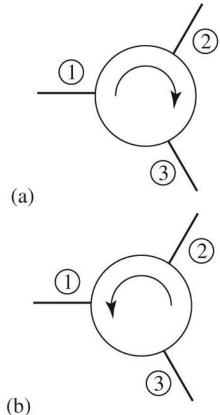
 $|S_{21}| = |S_{32}| = |S_{13}| = 1$

$$S_{21} = S_{32} = S_{13} = 0$$

 $|S_{12}| = |S_{23}| = |S_{31}| =$

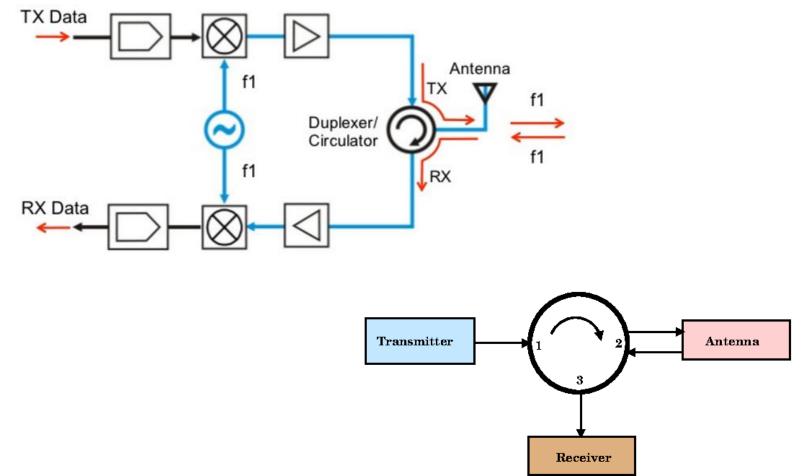
$$[S] = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

 $[S] = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{vmatrix}$



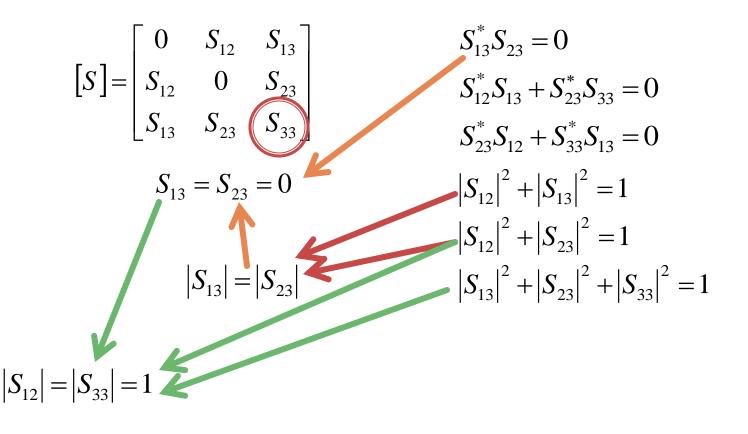
Nonreciprocal Three-Port Networks

circulator often found in duplexer



Mismatched Three-Port Networks

A lossless and reciprocal three-port network can be matched only on two ports, eg. 1 and 2:



Mismatched Three-Port Networks

A lossless and reciprocal three-port network $\begin{bmatrix} S \end{bmatrix} = \begin{bmatrix} 0 & S_{12} & S_{13} \\ S_{12} & 0 & S_{23} \\ S_{13} & S_{23} & S_{33} \end{bmatrix} \qquad \begin{bmatrix} 0 & e^{j\theta} & 0 \\ e^{j\theta} & 0 & 0 \\ 0 & 0 & e^{j\phi} \end{bmatrix} \qquad S_{12} = e^{j\theta} \\ S_{33} = e^{j\phi} \\ S_{33} = e^{j\phi}$ $S_{13} = S_{23} = 0$ $|S_{12}| = |S_{33}| = 1$ A lossless and reciprocal three-(1) \bigcirc port network degenerates into $S_{12} = e^{j\theta}$ two separate components: $S_{33}=e^{j\phi}$ a matched two-port line a totally mismatched one-(3)port:

characterized by a 4x4 S matrix

$$\begin{bmatrix} S \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} & S_{13} & S_{14} \\ S_{21} & S_{22} & S_{23} & S_{24} \\ S_{31} & S_{32} & S_{33} & S_{34} \\ S_{41} & S_{42} & S_{43} & S_{44} \end{bmatrix}$$

- the device is reciprocal if it does not contain:
 - anisotropic materials (usually ferrites)
 - active circuits
- to avoid power loss, we would like to have a network that is:
 - lossless, and
 - matched at all ports
 - to avoid reflection power "loss"

reciprocal

$$[S] = [S]^{t} \qquad S_{ij} = S_{ji}, \forall j \neq i$$
$$S_{12} = S_{21}, S_{13} = S_{31}, S_{23} = S_{32}$$

matched at all ports $S_{ii} = 0, \forall i$ $S_{11} = 0, S_{22} = 0, S_{33} = 0, S_{44} = 0$ then the S matrix is:

$$\begin{bmatrix} S \end{bmatrix} = \begin{bmatrix} 0 & S_{12} & S_{13} & S_{14} \\ S_{12} & 0 & S_{23} & S_{24} \\ S_{13} & S_{23} & 0 & S_{34} \\ S_{14} & S_{24} & S_{34} & 0 \end{bmatrix}$$

reciprocal, matched at all ports, S matrix:

$$\begin{bmatrix} S \end{bmatrix} = \begin{bmatrix} 0 & S_{12} & S_{13} & S_{14} \\ S_{12} & 0 & S_{23} & S_{24} \\ S_{13} & S_{23} & 0 & S_{34} \\ S_{14} & S_{24} & S_{34} & 0 \end{bmatrix}$$

- Iossless network
 - all the power injected in one port will be found exiting the network on all ports

$$\begin{bmatrix} S \end{bmatrix}^* \cdot \begin{bmatrix} S \end{bmatrix}^t = \begin{bmatrix} 1 \end{bmatrix} \qquad \sum_{k=1}^N S_{ki} \cdot S_{kj}^* = \delta_{ij}, \forall i, j$$
$$\sum_{k=1}^N S_{ki} \cdot S_{ki}^* = 1 \qquad \sum_{k=1}^N S_{ki} \cdot S_{kj}^* = 0, \forall i \neq j$$

$$S_{13}^{*} \cdot S_{23} + S_{14}^{*} \cdot S_{24} = 0 \quad /\cdot S_{24}^{*}$$

$$S_{12}^{*} \cdot S_{23} + S_{14}^{*} \cdot S_{34} = 0 \quad /\cdot S_{12}^{*}$$

$$S_{14}^{*} \cdot S_{13} + S_{24}^{*} \cdot S_{23} = 0 \quad /\cdot S_{13}^{*}$$

$$S_{14}^{*} \cdot S_{12} + S_{34}^{*} \cdot S_{23} = 0 \quad /\cdot S_{34}^{*}$$

$$S_{14}^{*} \cdot S_{12} + S_{34}^{*} \cdot S_{23} = 0 \quad /\cdot S_{34}^{*}$$

$$S_{14}^{*} \cdot S_{12} + S_{34}^{*} \cdot S_{23} = 0 \quad /\cdot S_{34}^{*}$$

$$S_{23}^{*} \cdot (|S_{12}|^{2} - |S_{34}|^{2}) = 0$$

• one solution: $S_{14} = S_{23} = 0$ resulting coupler is directional $|S_{12}|^2 + |S_{13}|^2 = 1$ $|S_{13}| = |S_{24}|$ $|S_{13}| = |S_{24}|$ $|S_{24}| = \begin{bmatrix} 0 & S_{12} & S_{13} & 0 \\ S_{12} & 0 & 0 & S_{24} \\ S_{13} & 0 & 0 & S_{34} \\ 0 & S_{24} & S_{24} & 0 \end{bmatrix}$

 $|S_{12}|^{2} + |S_{13}|^{2} = 1$ $|S_{12}|^{2} + |S_{24}|^{2} = 1$ $|S_{13}|^{2} + |S_{34}|^{2} = 1$ $|S_{24}|^{2} + |S_{34}|^{2} = 1$ $|S_{12}| = |S_{34}|$

$$[S] = \begin{bmatrix} 0 & S_{12} & S_{13} & 0 \\ S_{12} & 0 & 0 & S_{24} \\ S_{13} & 0 & 0 & S_{34} \\ 0 & S_{24} & S_{34} & 0 \end{bmatrix} \qquad \beta - \text{voltage coupling coefficient}$$

We can choose the phase reference

$$S_{12} = S_{34} = \alpha \qquad S_{13} = \beta \cdot e^{j\theta} \qquad S_{24} = \beta \cdot e^{j\phi}$$
$$S_{12}^* \cdot S_{13} + S_{24}^* \cdot S_{34} = 0 \qquad \to \qquad \theta + \phi = \pi \pm 2 \cdot n \cdot \pi$$
$$|S_{12}|^2 + |S_{24}|^2 = 1 \qquad \to \qquad \alpha^2 + \beta^2 = 1$$

 The other possible solution for previous equations offer either essentially the same result (with a different phase reference) or the degenerate case (2 separate two port networks side by side)

$$S_{14}^* \cdot (|S_{13}|^2 - |S_{24}|^2) = 0$$
 $S_{23} \cdot (|S_{12}|^2 - |S_{34}|^2) = 0$

Four-Port Networks

- A four-port network simultaneously:
 - matched at all ports
 - reciprocal
 - Iossless

is always directional

 the signal power injected into one port is transmitted only towards two of the other three ports

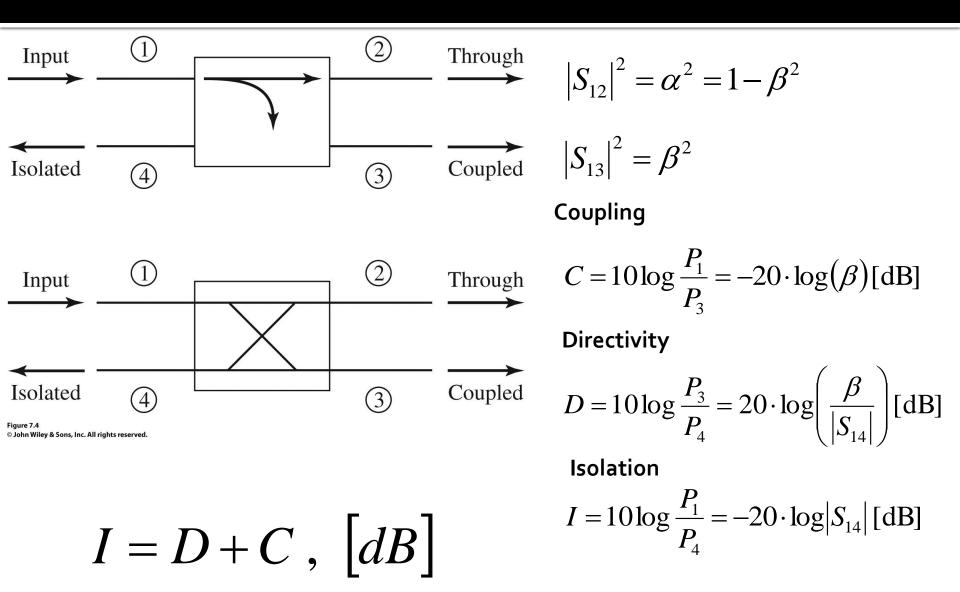
$$[S] = \begin{bmatrix} 0 & \alpha & \beta \cdot e^{j\theta} & 0 \\ \alpha & 0 & 0 & \beta \cdot e^{j\phi} \\ \beta \cdot e^{j\theta} & 0 & 0 & \alpha \\ 0 & \beta \cdot e^{j\phi} & \alpha & 0 \end{bmatrix}$$

Four-Port Networks

- two particular choices commonly occur in practice
 - A Symmetric Coupler $\theta = \phi = \pi/2$

 $[S] = \begin{bmatrix} 0 & \alpha & j\beta & 0 \\ \alpha & 0 & 0 & j\beta \\ j\beta & 0 & 0 & \alpha \\ 0 & j\beta & \alpha & 0 \end{bmatrix}$ • An Antisymmetric Coupler $\theta = 0, \phi = \pi$ $[S] = \begin{bmatrix} 0 & \alpha & \beta & 0 \\ \alpha & 0 & 0 & -\beta \\ \beta & 0 & 0 & \alpha \\ 0 & -\beta & \alpha & 0 \end{bmatrix}$

Directional Coupler



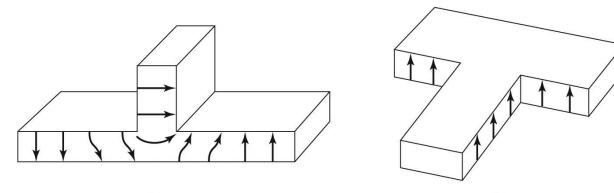
Power dividers

Three-Port Networks

$$\begin{bmatrix} S \end{bmatrix} = \begin{bmatrix} 0 & S_{12} & S_{13} \\ S_{12} & 0 & S_{23} \\ S_{13} & S_{23} & 0 \end{bmatrix}$$

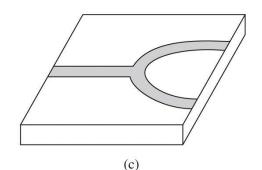
- 6 equations / 3 unknowns
 - no solution is possible
- A three-port network **cannot** be simultaneously:
 - reciprocal
 - Iossless
 - matched at all ports
- If any one of these three conditions is relaxed, then a physically realizable device is possible

- consists in splitting an input line into two separate output lines
- available in various technologies for the lines

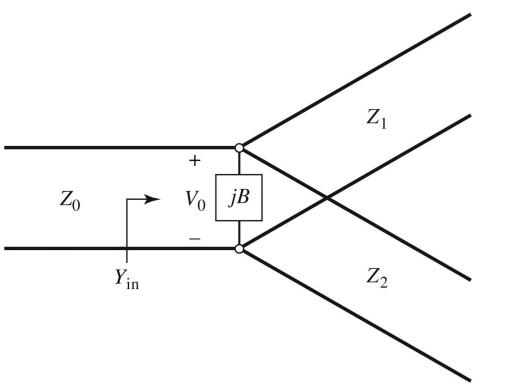


(a)

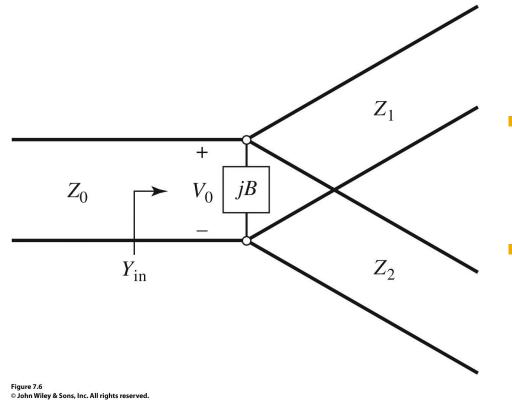
(b)



 if the lines are lossless, the network is reciprocal, so it cannot be matched at all ports simultaneously



- there may be fringing fields and higher order modes associated with the discontinuity at such a junction
- the stored energy can be accounted for by a lumped susceptance: B
- Designing the power divider targets matching to the input line Z_o
 - outputs (unmatched, Z_1 and Z_2) can be, if needed, matched to Z_0 ($\lambda/4$, binomial, Chebyshev)



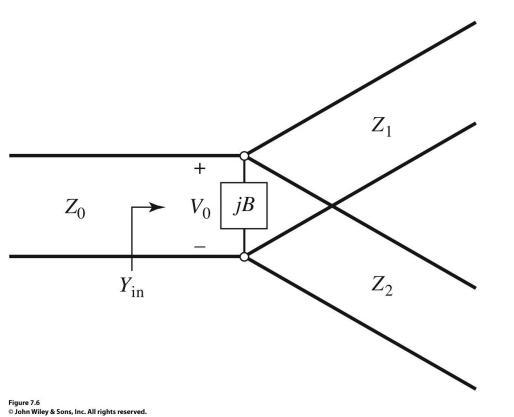
$$Y_{in} = j \cdot B + \frac{1}{Z_1} + \frac{1}{Z_2} = \frac{1}{Z_0}$$

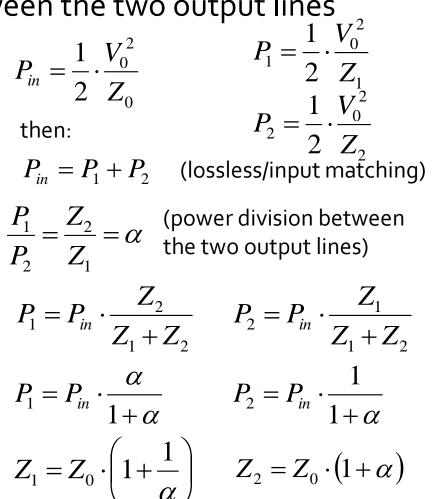
- If the transmission lines are assumed to be lossless, then the characteristic impedances are real
- the matching condition can be met only if B ≅ o thus the matching condition is:

$$\frac{1}{Z_1} + \frac{1}{Z_2} = \frac{1}{Z_0}$$

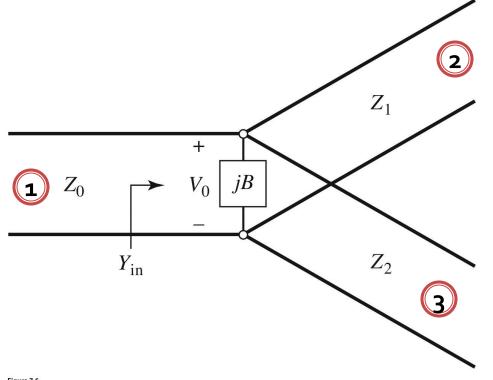
In practice, if **B** is not negligible, some type of discontinuity compensation or a reactive tuning element can usually be used to cancel this susceptance, at least over a narrow frequency range.

 if V_o is the voltage at the junction, we can compute how the input power is divided between the two output lines





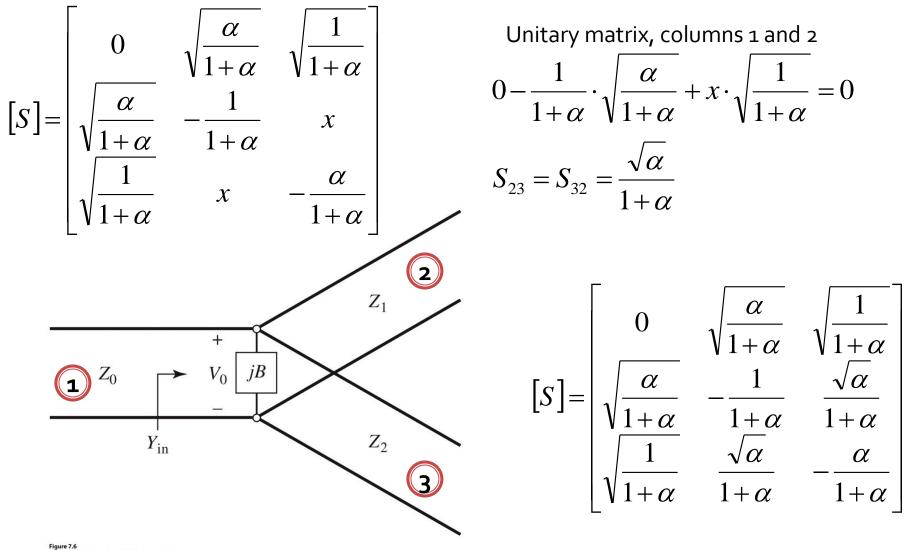
- S matrix
 - lossless (unitary matrix)
 - reciprocal (symmetrical matrix)
 - input port is matched $S_{11} = 0$

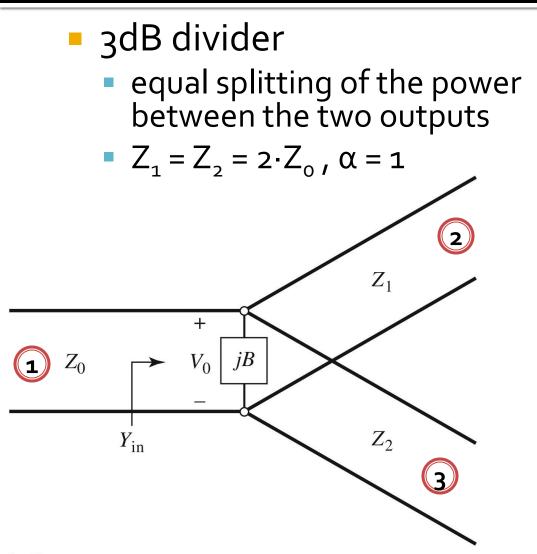


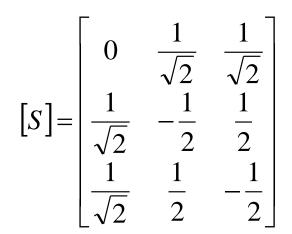
$$P_2 = P_1 \cdot \frac{\alpha}{1+\alpha} \qquad S_{21} = S_{12} = \sqrt{\frac{\alpha}{1+\alpha}}$$
$$P_3 = P_1 \cdot \frac{1}{1+\alpha} \qquad S_{31} = S_{13} = \sqrt{\frac{1}{1+\alpha}}$$

the reflection coefficients seen looking into the output ports

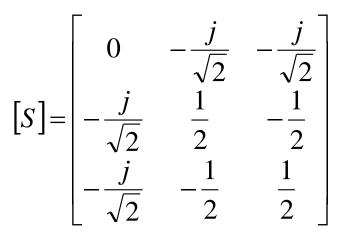
$$S_{22} = \Gamma_1 = \frac{Z_0 || Z_2 - Z_1}{Z_0 || Z_2 + Z_1} = -\frac{1}{1 + \alpha}$$
$$S_{33} = \Gamma_2 = \frac{Z_0 || Z_1 - Z_2}{Z_0 || Z_1 + Z_2} = -\frac{\alpha}{1 + \alpha}$$







If we add $\lambda/4$ transformers to match outputs to Z_o S matrix:



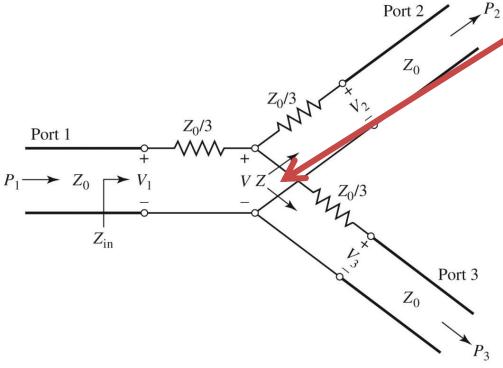
Example

 Design a lossless T-junction divider with a 30Ω source impedance to give a 3:1 power split. Design quarter-wave matching transformers to convert the impedances of the output lines to 30Ω. (Pozar problem)

$$\begin{split} P_{in} &= \frac{1}{2} \cdot \frac{V_0^2}{Z_0} \qquad \begin{cases} P_1 + P_2 = P_{in} \\ P_1 : P_2 = 3:1 \end{cases} \Rightarrow \begin{cases} P_1 = \frac{1}{4} \cdot P_{in} \\ P_2 = \frac{3}{4} \cdot P_{in} \end{cases} \\ P_2 &= \frac{3}{4} \cdot P_{in} \end{cases} \\ P_1 &= \frac{1}{2} \cdot \frac{V_0^2}{Z_1} = \frac{1}{4} \cdot P_{in} \qquad Z_1 = 4 \cdot Z_0 = 120 \ \Omega \end{cases} \\ P_2 &= \frac{1}{2} \cdot \frac{V_0^2}{Z_2} = \frac{3}{4} \cdot P_{in} \qquad Z_2 = 4 \cdot Z_0 / 3 = 40 \ \Omega \end{cases} \\ Input \text{ match check} \\ Z_{in} &= 40 \ \Omega \parallel 120 \ \Omega = 30 \ \Omega \end{cases} \\ \text{quarter-wave transformers} \qquad Z_c^i = \sqrt{Z_i \cdot Z_L} \\ Z_c^1 &= \sqrt{Z_1 \cdot Z_L} = \sqrt{120\Omega \cdot 30\Omega} = 60\Omega \qquad Z_c^2 = \sqrt{Z_2 \cdot Z_L} = \sqrt{40\Omega \cdot 30\Omega} = 34.64\Omega \end{split}$$

Resistive Divider

- If a three-port divider contains lossy components, it can be made to be :
 - reciprocal
 - matched at all ports



The impedance Z, seen looking into the Zo/3 resistor followed by a terminated output line:

$$Z = \frac{Z_0}{3} + Z_0 = \frac{4Z_0}{3}$$

The input line will be terminated with a Zo/3 resistor in series with two such lines Z in parallel

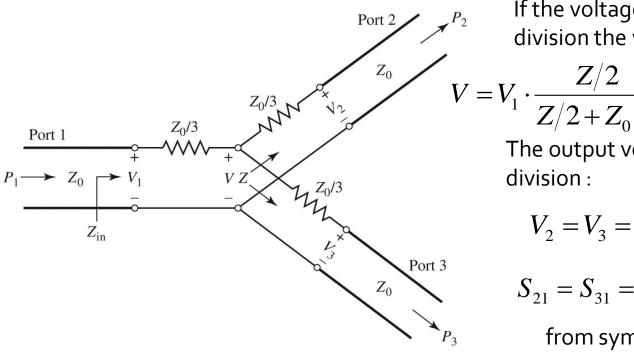
$$Z_{in} = \frac{Z_0}{3} + \frac{1}{2} \cdot \frac{4Z_0}{3} = Z_0$$

so it will be matched: $S_{11} = 0$

from symmetry: $S_{11} = S_{22} = S_{33} = 0$

Resistive Divider

- If a three-port divider contains lossy components, it can be made to be :
 - reciprocal
 - matched at all ports $S_{11} = S_{22} = S_{33} = 0$



If the voltage at port 1 is V1, then by voltage division the voltage V at the junction is:

$$=V_1 \cdot \frac{Z/2}{Z/2 + Z_0/3} = V_1 \cdot \frac{2Z_0/3}{2Z_0/3 + Z_0/3} = \frac{2}{3} \cdot V_1$$

The output voltages are, again by voltage division :

$$V_{2} = V_{3} = V \cdot \frac{Z_{0}}{Z_{0} + Z_{0}/3} = \frac{3}{4} \cdot V = \frac{1}{2} \cdot V_{1}$$

$$S_{21} = S_{31} = \frac{1}{2}$$

from symmetry: $S_{21} = S_{31} = S_{23} = \frac{1}{2}$

Resistive Divider

- If a three-port divider contains lossy components, it can be made to be :
 - reciprocal (S matrix is symmetrical) $S_{21} = S_{31} = S_{23} = \frac{1}{2}$
 - matched at all ports $S_{11} = S_{22} = S_{33} = 0$

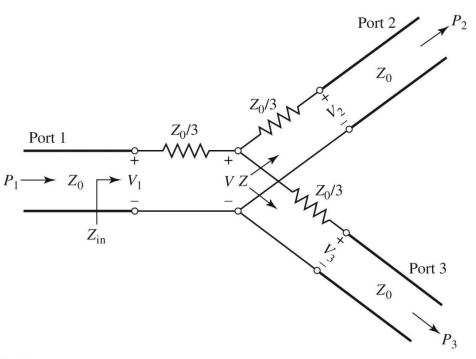
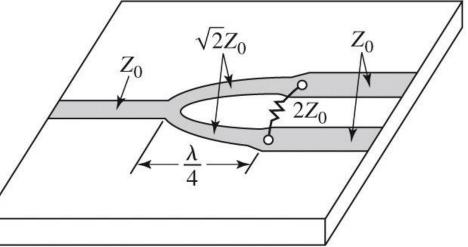


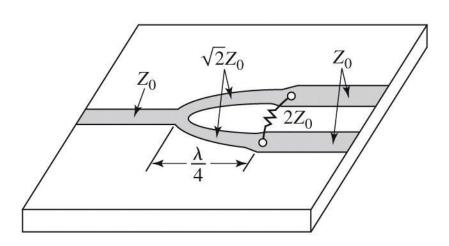
Figure 7.7 © John Wiley & Sons, Inc. All rights reserved S matrix: $[S] = \frac{1}{2} \cdot \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ Powers: $P_{in} = \frac{1}{2} \cdot \frac{V_1^2}{Z_0}$ $P_2 = P_3 = \frac{1}{2} \cdot \frac{(1/2V_1)^2}{Z_0} = \frac{1}{8} \cdot \frac{V_1^2}{Z_0} = \frac{1}{4} \cdot P_{in}$

Half of the supplied power is dissipated in the 3 resistors. The output powers are 6 dB below the input power level

- Previous power dividers suffer from a major drawback, there is not isolation between the two output ports $S_{23} = S_{32} \neq 0$
 - this requirement is important in some applications
- The Wilkinson power divider solves this problem
 - it also has the useful property of appearing lossless when the output ports are matched
 - only reflected power from the output ports is dissipated



- one input line
- two λ/4 transformers
- one resistor between the output lines



 Z_0

(b)

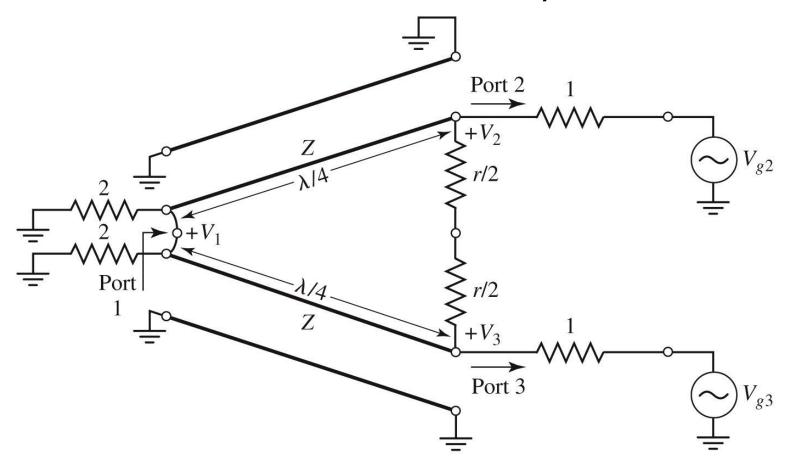
Even/Odd Mode Analysis

- In linear circuits we can use the superposition principle
- advantages
 - reduction of the circuit complexity
 - decrease of the number of ports (main advantage)

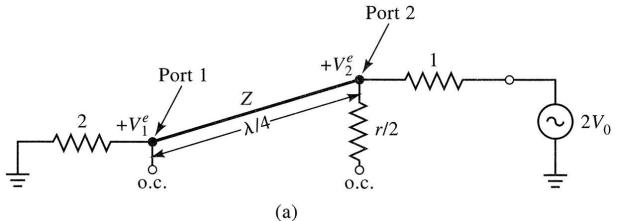
Response (ODD + EVEN) = Response (ODD) + Response (EVEN)

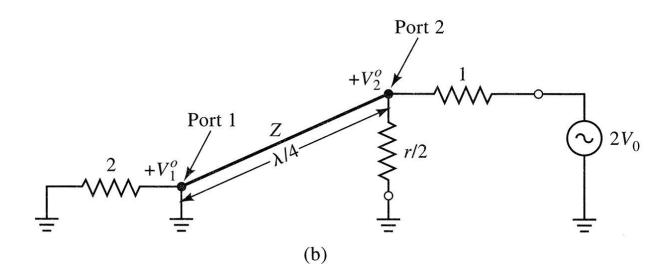
We can benefit from existing symmetries !!

the circuit in normalized and symmetric form

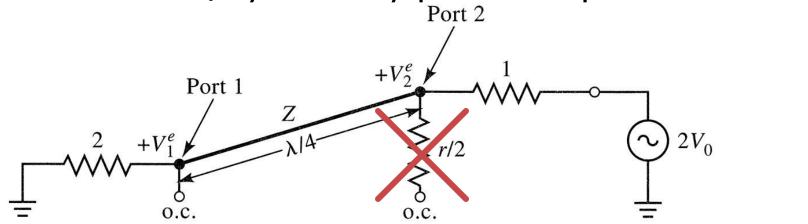


Even/Odd Mode Analysis

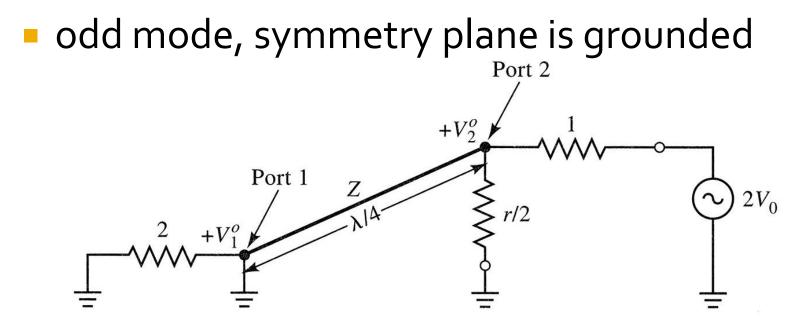




even mode, symmetry plane is open circuit



looking into port 2, $\lambda/4$ transformer with 2 load $Z_{in2}^e = \frac{Z^2}{2}$ if $Z = \sqrt{2}$ port 2 is matched $Z_{in2}^e = 1$ $V(x) = V^+ \cdot \left(e^{-j\beta \cdot x} + \Gamma \cdot e^{j\beta \cdot x}\right)$ x=0 at port 1 $x = -\lambda/4$ at port 2 $V_2^e = V(-\lambda/4) = jV^+ \cdot (1-\Gamma) = V_0$ $V_1^e = V(0) = V^+ \cdot (1+\Gamma) = jV_0 \cdot \frac{\Gamma+1}{\Gamma-1}$ Γ : reflection coefficient seen at port 1 looking toward the resistor of normalized value 2 from the transformer $Z = \sqrt{2}$ $\Gamma = \frac{2-\sqrt{2}}{2+\sqrt{2}}$ $V_1^e = -jV_0\sqrt{2}$



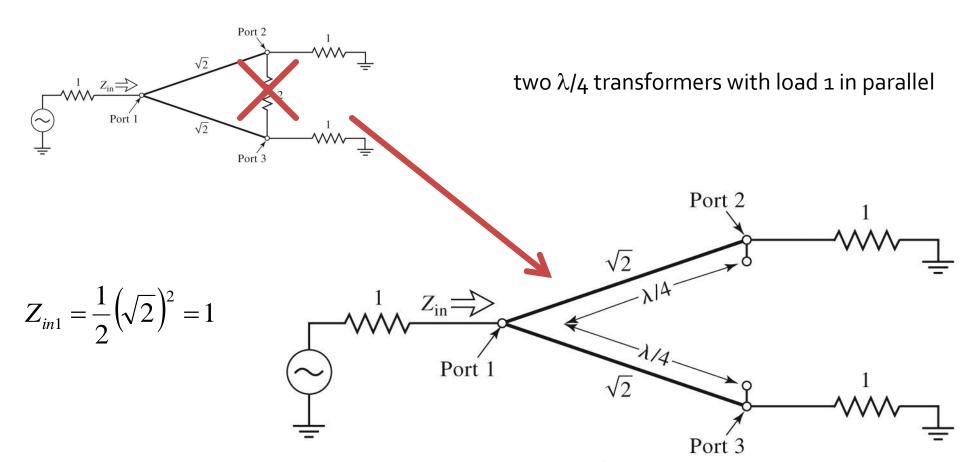
looking from port 2 the $\lambda/4$ line is shortcircuited, impedance seen from port 2 is ∞

 $Z_{in2}^o = r/2$ if r=2 port 2 is matched

 $Z_{in2}^o = 1 \longrightarrow V_2^o = V_0$

 $V_1^o = 0$ in the odd mode all the power is dissipated in the r/2 resistor

input impedance in port 1



S parameters

$$\begin{split} & Z_{in1} = \frac{1}{2} \left(\sqrt{2} \right)^2 = 1 \qquad S_{11} = 0 \\ & Z_{in2}^e = 1 \qquad Z_{in2}^o = 1 \qquad \text{and} \qquad Z_{in3}^e = 1 \qquad Z_{in3}^o = 1 \qquad S_{22} = S_{33} = 0 \\ & S_{12} = S_{21} = \frac{V_1^e + V_1^o}{V_2^e + V_2^o} = -\frac{j}{\sqrt{2}} \\ & \text{and} \qquad S_{13} = S_{31} = -\frac{j}{\sqrt{2}} \\ & S_{23} = S_{32} = 0 \qquad \text{due to short or open at bisection, both eliminate transfer between the ports + reciprocal circuit} \end{split}$$

• at design frequency (length of the transformer equal to $\lambda_o/4$) we have **isolation** between the two output ports

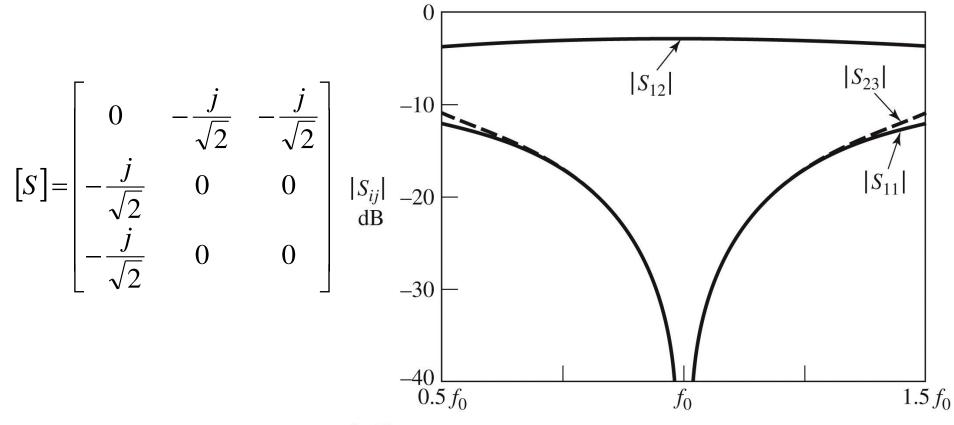
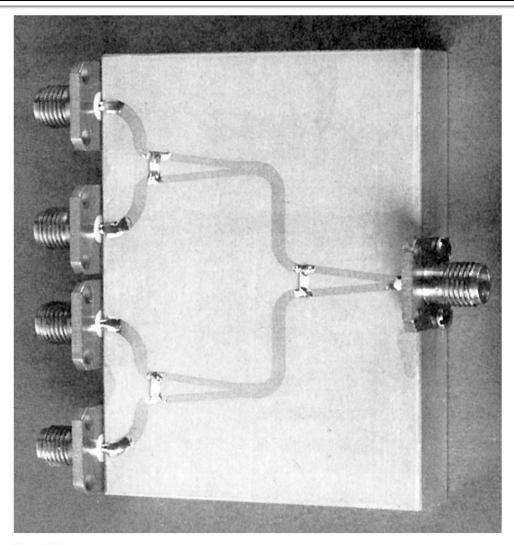
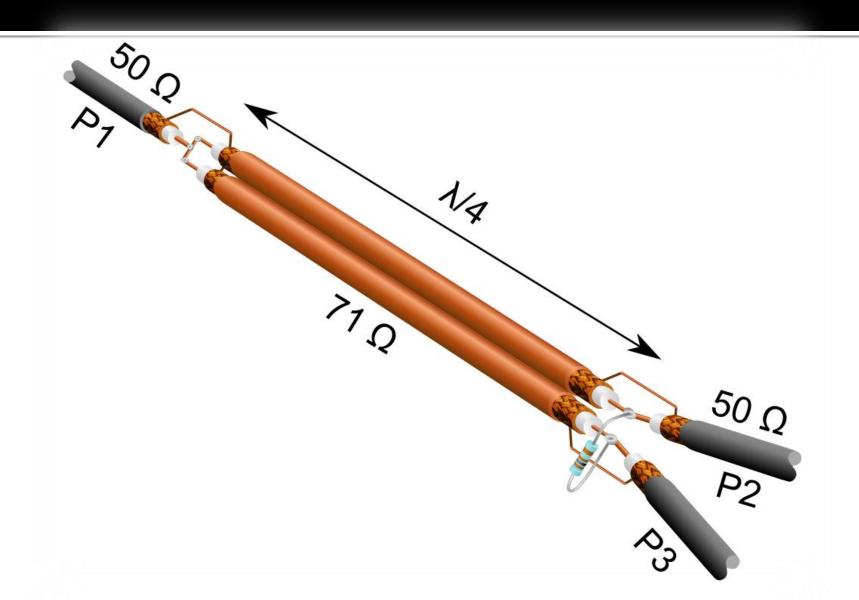


Figure 7.12 © John Wiley & Sons, Inc. All rights reserved.



3 X Wilkinson = 4-way power divider

Figure 7.15 Courtesy of M. D. Abouzahra, MIT Lincoln Laboratory, Lexington, Mass.



Directional couplers

Four-Port Networks

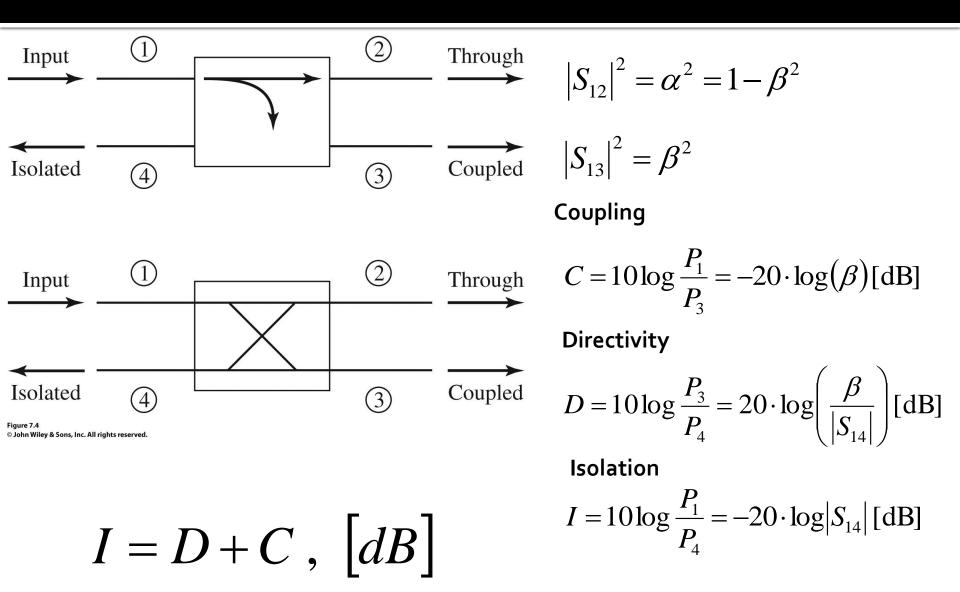
- A four-port network simultaneously:
 - matched at all ports
 - reciprocal
 - Iossless

is always directional

 the signal power injected into one port is transmitted only towards two of the other three ports

$$[S] = \begin{bmatrix} 0 & \alpha & \beta \cdot e^{j\theta} & 0 \\ \alpha & 0 & 0 & \beta \cdot e^{j\phi} \\ \beta \cdot e^{j\theta} & 0 & 0 & \alpha \\ 0 & \beta \cdot e^{j\phi} & \alpha & 0 \end{bmatrix}$$

Directional Coupler



Four-Port Networks

- two particular choices commonly occur in practice
 - A Symmetric Coupler $\theta = \phi = \pi/2$

 $[S] = \begin{bmatrix} 0 & \alpha & j\beta & 0 \\ \alpha & 0 & 0 & j\beta \\ j\beta & 0 & 0 & \alpha \\ 0 & j\beta & \alpha & 0 \end{bmatrix}$ • An Antisymmetric Coupler $\theta = 0, \phi = \pi$ $[S] = \begin{bmatrix} 0 & \alpha & \beta & 0 \\ \alpha & 0 & 0 & -\beta \\ \beta & 0 & 0 & \alpha \\ 0 & -\beta & \alpha & 0 \end{bmatrix}$

Hybrid Couplers

Hybrid Couplers are directional couplers with 3 dB coupling factor

$$\alpha = \beta = 1/\sqrt{2}$$

The cuadrature (90°) hybrid

$$\left(\theta = \phi = \pi/2\right)$$

The 180° ring hybrid (rat-race)

$$(\theta = 0, \phi = \pi)$$

$$[S] = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & 1 & j & 0 \\ 1 & 0 & 0 & j \\ j & 0 & 0 & 1 \\ 0 & j & 1 & 0 \end{bmatrix}$$

$$[S] = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & -1 \\ 1 & 0 & 0 & 1 \\ 0 & -1 & 1 & 0 \end{bmatrix}$$

The cuadrature (90°) hybrid

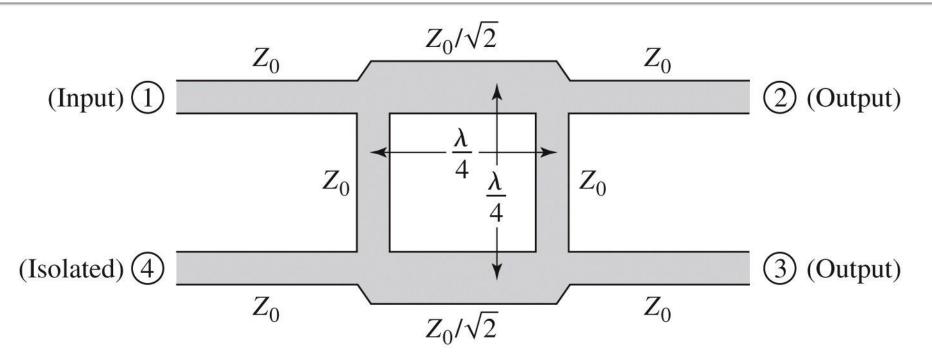
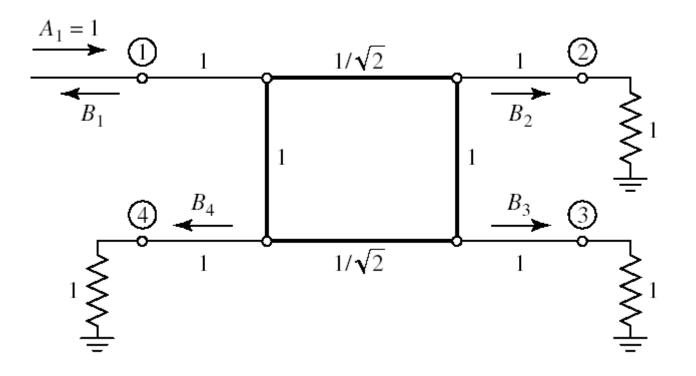


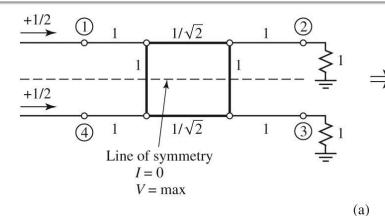
Figure 7.21 © John Wiley & Sons, Inc. All rights reserved.

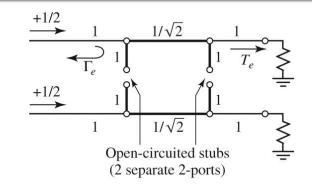
$$[S] = \frac{-1}{\sqrt{2}} \begin{bmatrix} 0 & j & 1 & 0 \\ j & 0 & 0 & 1 \\ 1 & 0 & 0 & j \\ 0 & 1 & j & 0 \end{bmatrix}$$

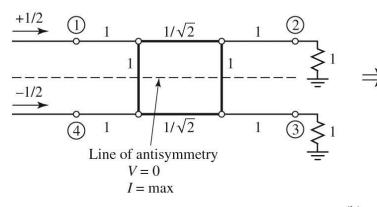
Even/Odd Mode Analysis

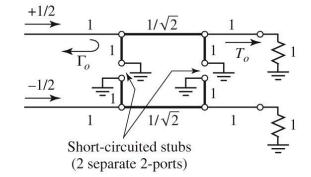


Even/Odd Mode Analysis









(b)

Figure 7.23 © John Wiley & Sons, Inc. All rights reserved.

 $b_1 = \frac{1}{2}\Gamma_e + \frac{1}{2}\Gamma_o$ $b_2 = \frac{1}{2}T_e + \frac{1}{2}T_o$

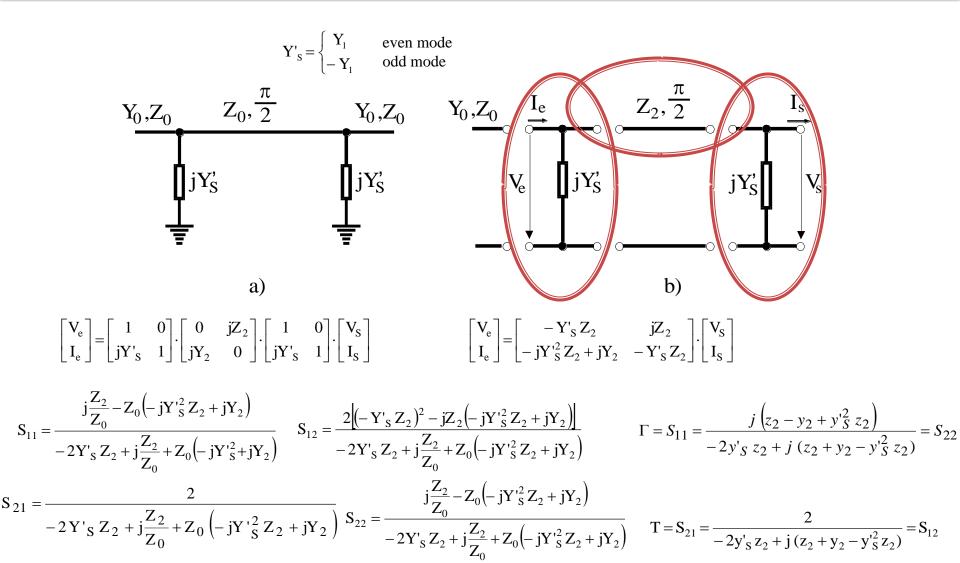
 $b_3 = \frac{1}{2}T_e - \frac{1}{2}T_o$ $b_4 = \frac{1}{2}\Gamma_e - \frac{1}{2}\Gamma_o$

Library of ABCD matrices

TABLE 4.1 ABCD Parameters of Some Useful Two-Port Circuits

Circuit	ABCD Parameters				
Zo	A = 1	B = Z			
	C = 0	D = 1			
0					
Y	A = 1	B = 0			
	C = Y	D = 1			
Z ₀ , β	$A = \cos \beta \ell$	$B = j Z_0 \sin \beta \ell$			
^°	$C = jY_0 \sin\beta\ell$	$D = \cos \beta \ell$			

S parameters (from ABCD)



Relation between two port S parameters and ABCD parameters

$$A = \sqrt{\frac{Z_{01}}{Z_{02}}} \frac{(1 + S_{11} - S_{22} - \Delta S)}{2S_{21}}$$
$$B = \sqrt{Z_{01}Z_{02}} \frac{(1 + S_{11} + S_{22} + \Delta S)}{2S_{21}}$$
$$C = \frac{1}{\sqrt{Z_{01}Z_{02}}} \frac{1 - S_{11} - S_{22} + \Delta S}{2S_{21}}$$
$$D = \sqrt{\frac{Z_{02}}{Z_{01}}} \frac{1 - S_{11} + S_{22} - \Delta S}{2S_{21}}$$

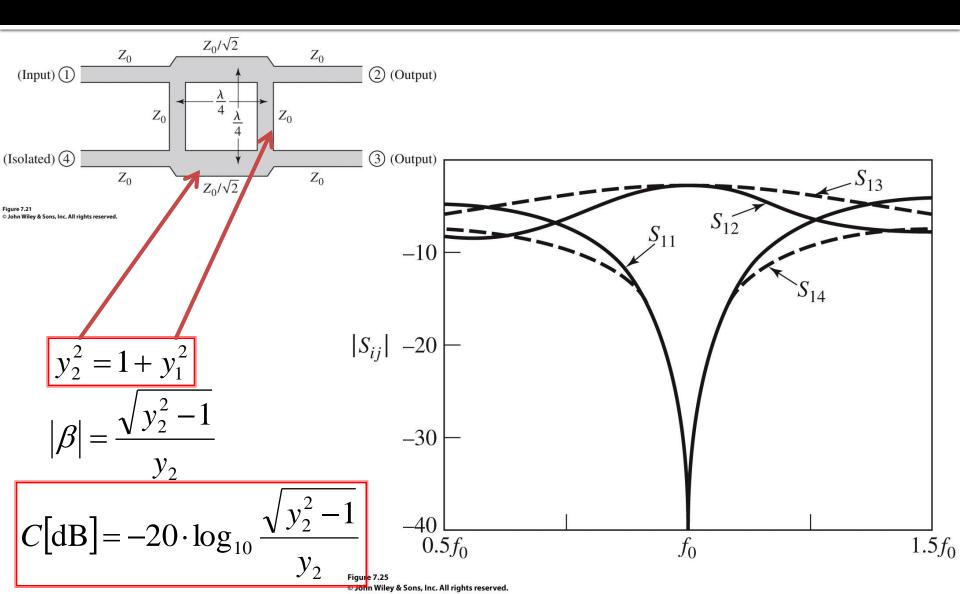
 $\Delta S = S_{11}S_{22} - S_{12}S_{21}$

$$\begin{split} S_{11} &= \frac{AZ_{02} + B - CZ_{01}Z_{02} - DZ_{01}}{AZ_{02} + B + CZ_{01}Z_{02} + DZ_{01}} \\ S_{12} &= \frac{2(AD - BC)\sqrt{Z_{01}Z_{02}}}{AZ_{02} + B + CZ_{01}Z_{02} + DZ_{01}} \\ S_{21} &= \frac{2\sqrt{Z_{01}Z_{02}}}{AZ_{02} + B + CZ_{01}Z_{02} + DZ_{01}} \\ S_{22} &= \frac{-AZ_{02} + B - CZ_{01}Z_{02} + DZ_{01}}{AZ_{02} + B + CZ_{01}Z_{02} + DZ_{01}} \end{split}$$

Matching and coupling factor

$$\begin{split} &\Gamma_{e} = \frac{j\left(z_{2} - y_{2} + y_{1}^{2} z_{2}\right)}{-2y_{1}z_{2} + j\left(z_{2} + y_{2} - y_{1}^{2} z_{2}\right)} \\ &\Gamma_{o} = \frac{j\left(z_{2} - y_{2} + y_{1}^{2} z_{2}\right)}{2y_{1}z_{2} + j\left(z_{2} + y_{2} - y_{1}^{2} z_{2}\right)} \\ &L_{e} = \frac{2}{-2y_{1}z_{2} + j\left(z_{2} + y_{2} - y_{1}^{2} z_{2}\right)} \\ &T_{e} = \frac{2}{-2y_{1}z_{2} + j\left(z_{2} + y_{2} - y_{1}^{2} z_{2}\right)} \\ &T_{e} = \frac{2}{2y_{1}z_{2} + j\left(z_{2} + y_{2} - y_{1}^{2} z_{2}\right)} \\ &T_{e} = \frac{2}{2y_{1}z_{2} + j\left(z_{2} + y_{2} - y_{1}^{2} z_{2}\right)} \\ &T_{e} = \frac{2}{2y_{1}z_{2} + j\left(z_{2} + y_{2} - y_{1}^{2} z_{2}\right)} \\ &D_{e} = \frac{2}{2y_{1}z_{2} + j\left(z_{2} + y_{2} - y_{1}^{2} z_{2}\right)} \\ &D_{e} = \frac{2}{2y_{1}z_{2} + j\left(z_{2} + y_{2} - y_{1}^{2} z_{2}\right)} \\ &D_{e} = \frac{2}{2y_{1}z_{2} + j\left(z_{2} + y_{2} - y_{1}^{2} z_{2}\right)} \\ &D_{e} = 0 \Rightarrow z_{2} - y_{2} + y_{1}^{2} z_{2} = 0 \Rightarrow z_{2}^{2} = \frac{1}{1 + y_{1}^{2}} \\ &D_{e} = \frac{\sqrt{y_{2}^{2} - 1}}{y_{2}} \\ &D_{e} = 0 \Rightarrow z_{2} - y_{2} + y_{1}^{2} z_{2} = 0 \Rightarrow z_{2}^{2} = \frac{1}{1 + y_{1}^{2}} \\ &D_{e} = -\frac{\sqrt{y_{2}^{2} - 1}}{y_{2}} \\ &D_{e} = 0 \Rightarrow z_{2} - y_{2} + y_{1}^{2} z_{2} = 0 \Rightarrow z_{1}^{2} = \frac{1}{1 + y_{1}^{2}} \\ &D_{e} = -\frac{\sqrt{y_{2}^{2} - 1}}{y_{2}} \\ &D_{e} = 0 \Rightarrow z_{1} - y_{1} z_{2} \\ &D_{e} = -y_{1} z_{$$

The cuadrature (90°) hybrid



Design a cuadrature (90°) hybrid working on 50 Ω , and plot the S parameters between

 $0.5f_0$ and $1.5f_0$, where f_0

is the frequency at which the length of the branches is $\lambda/4$

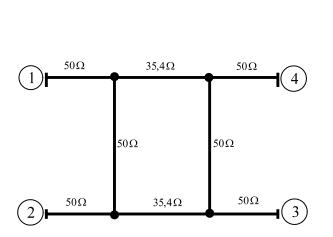
Solution

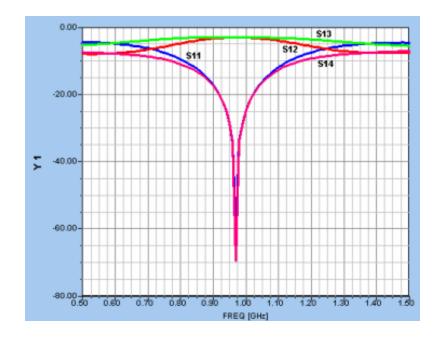
A cuadrature (90°) hybrid has C = 3dB, then $\beta = 1/\sqrt{2}$

$$y_2 = \sqrt{2}$$
 and $y_1 = 1$

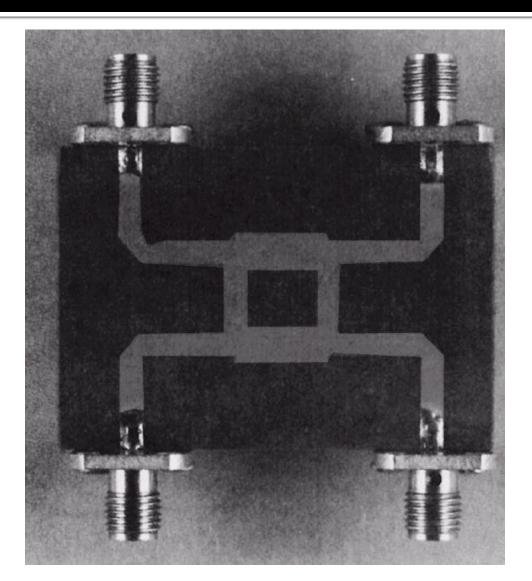
 $Z_1 = Z_0 = 50\Omega$ $Z_2 = \frac{Z_0}{\sqrt{2}} = 35.4\Omega$

 $Z_0 = 50\Omega$ the characteristic impedances will be:





The cuadrature (90°) hybrid



The cuadrature (90°) hybrid

 eight-way microstrip power divider with six quadrature hybrids in a Bailey configuration

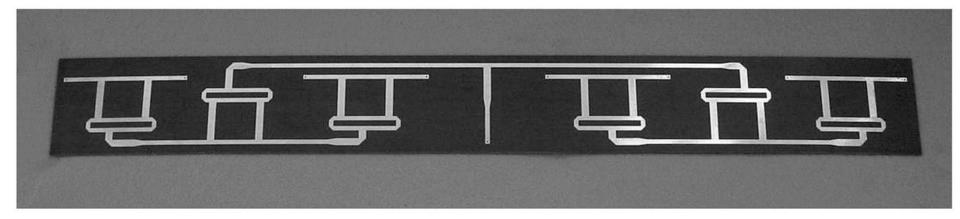
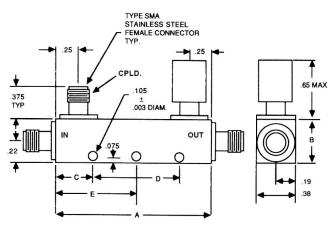


Figure 7.24 Courtesy of ProSensing, Inc., Amherst, Mass.

Datasheet

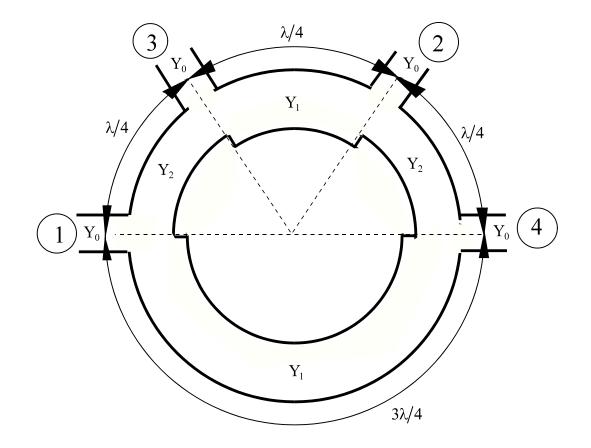
T

в

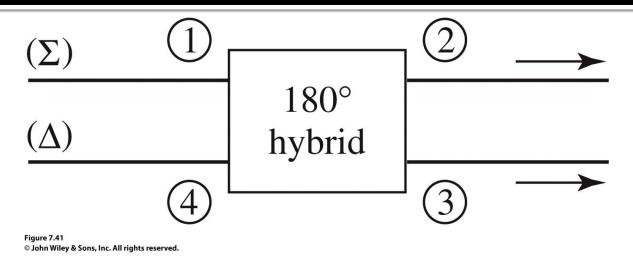


× Model No.	Frequency	Counting †	Fron Sone	Insertion Lo	ss (dB)	Directivity	VSWR max.	
	o. Range (Ghz)	Coupling † (dB)	Freq. Sens. (dB)	Excl. Cpld Pwr	True	 Directivity - (dB min.) 	Primary Line	Secondary Line
MDC6223-6	0.5-1.0	6 ±1.00	±0.60	0.20	1.80	25	1.15	1.15
MDC6223-1	0 0.5-1.0	10 ±1.25	±0.75	0.20	0.80	25	1.10	1.10
MDC6223-20	0 0.5-1.0	20 ±1.25	±0.75	0.15	0.20	25	1.10	1.10
MDC6223-3	0 0.5-1.0	30 ±1.25	±0.75	0.15	0.20	25	1.10	1.10
MDC6224-6	1.0-2.0	6 ±1.00	±0.60	0.20	1.80	25	1.15	1.15
MDC6224-1	0 1.0-2.0	10 ±1.25	±0.75	0.20	0.80	25	1.10	1.10
MDC6224-20	0 1.0-2.0	20 ±1.25	±0.75	0.15	0.20	25	1.10	1.10
MDC6224-30	0 1.0-2.0	30 ±1.25	±0.75	0.15	0.20	25	1.10	1.10
MDC6225-6	2.0-4.0	6 ±1.00	±0.60	0.20	1.80	22	1.15	1.15
MDC6225-1	0 2.0-4.0	10 ±1.25	±0.75	0.20	0.80	22	1.15	1.15
MDC6225-20	0 2.0-4.0	20 ±1.25	±0.75	0.15	0.20	22	1.15	1.15
MDC6225-30	0 2.0-4.0	30 ±1.25	±0.75	0.15	0.20	22	1.15	1.15
MDC6266-6	2.6-5.2	6 ±1.00	±0.60	0.20	1.80	20	1.25	1.25
MDC6266-1	0 2.6-5.2	10 ±1.25	±0.75	0.20	0.80	20	1.25	1.25
MDC6266-20	0 2.6-5.2	20 ±1.25	±0.75	0.20	0.25	20	1.25	1.25
MDC6266-3	0 2.6-5.2	30 ±1.25	±0.75	0.20	0.20	20	1.25	1.25
MDC6226-6	4.0-8.0	6 ±1.00	±0.60	0.25	1.90	20	1.25	1.25
MDC6226-1	0 4.0-8.0	10 ±1.25	±0.75	0.25	0.90	20	1.25	1.25
MDC6226-20	0 4.0-8.0	20 ±1.25	±0.75	0.25	0.30	20	1.25	1.25
MDC6226-3	0 4.0-8.0	30 ±1.25	±0.75	0.25	0.25	20	1.25	1.25
MDC6227-6	7.0-12.4	6 ±1.00	±0.50	0.30	2.00	17	1.30	1.30
MDC6227-1	0 7.0-12.4	10 ±1.00	±0.50	0.30	1.00	17	1.30	1.30
MDC6227-20		20 ±1.00	±0.50	0.30	0.35	17	1.30	1.30
11000007.0		00 1 00	0 50		0.00	. →		-1

The 180° ring hybrid (rat-race)

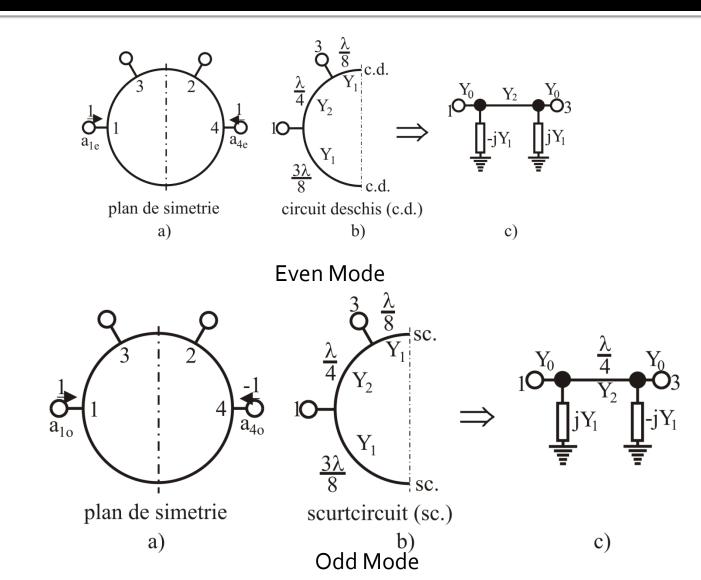


The 180° ring hybrid



- The 180° ring hybrid can be operated in different modes:
 - a signal applied to port 1 will be evenly split into two in-phase components at ports 2 and 3
 - input applied to port 4 it will be equally split into two components with a 180° phase difference at ports 2 and 3
 - input signals applied at ports 2 and 3, the sum of the inputs will be formed at port 1, while the difference will be formed at port 4 (power combiner)

Even/Odd Mode Analysis



Even/Odd Mode Analysis

$$s_{11} = \frac{jz_2y_s + jz_2 - j(y_2 + y_e y_s z_2) - jy_e z_2}{jz_2y_s + jz_2 + j(y_2 + y_e y_s z_2) + jy_e z_2}$$

$$s_{12} = \frac{2}{jz_2y_s + jz_2 + j(y_2 + y_e y_s z_2) + jy_e z_2}$$

$$s_{12} = \frac{2}{jz_2y_s + jz_2 + j(y_2 + y_e y_s z_2) + jy_e z_2}$$

$$s_{12} = \frac{2}{jz_2y_s + jz_2 + j(y_2 + y_e y_s z_2) + jy_e z_2}$$

$$s_{12} = \frac{2}{jz_2y_s + jz_2 + j(y_2 + y_e y_s z_2) + jy_e z_2}$$

$$s_{12} = \frac{2}{jz_2y_s + jz_2 + j(y_2 + y_e y_s z_2) + jy_e z_2}$$

$$s_{12} = \frac{2}{jz_2y_s + jz_2 + j(y_2 + y_e y_s z_2) + jy_e z_2}$$

$$s_{12} = \frac{2}{jz_2y_s + jz_2 + j(y_2 + y_e y_s z_2) + jy_e z_2}$$

$$s_{12} = \frac{2}{jz_2y_s + jz_2 + j(y_2 + y_e y_s z_2) + jy_e z_2}$$

$$s_{12} = \frac{2}{jz_2y_s + jz_2 + j(y_2 + y_e y_s z_2) + jy_e z_2}$$

$$s_{12} = \frac{2}{jz_2y_s + jz_2 + j(y_2 + y_e y_s z_2) + jy_e z_2}$$

$$s_{12} = \frac{2}{jz_2y_s + jz_2 - j(y_2 + y_e y_s z_2) + jy_e z_2}$$

$$s_{12} = \frac{2}{jz_2y_s + jz_2 - j(y_2 + y_e y_s z_2) + jy_e z_2}$$

$$s_{12} = \frac{2}{jz_2y_s + jz_2 - j(y_2 + y_e y_s z_2) + jy_e z_2}$$

$$s_{12} = \frac{2}{jz_2y_s + jz_2 - j(y_2 + y_e y_s z_2) + jy_e z_2}$$

$$s_{12} = \frac{2}{jz_2y_s + jz_2 - j(y_2 + y_e y_s z_2) + jy_e z_2}$$

$$s_{12} = \frac{2}{jz_2y_s + jz_2 - j(y_2 + y_e y_s z_2) + jy_e z_2}$$

$$s_{12} = \frac{2}{jz_2y_s + jz_2 - j(y_2 + y_e y_s z_2) + jy_e z_2}$$

$$s_{12} = \frac{2}{jz_2y_s + jz_2 - j(y_2 + y_e y_s z_2) + jy_e z_2}$$

$$s_{12} = \frac{2}{jz_2y_s + jz_2 - j(y_2 + y_e y_s z_2) + jy_e z_2}$$

$$s_{12} = \frac{2}{jz_2y_s + jz_2 - j(y_2 + y_e y_s z_2) + jy_e z_2}$$

$$s_{12} = \frac{2}{jz_2y_s + jz_2 - j(y_2 + y_e y_s z_2) + jy_e z_2}$$

$$s_{12} = \frac{2}{jz_2y_s + jz_2 - j(y_2 + y_e y_s z_2) + jy_e z_2}$$

$$s_{12} = \frac{2}{jz_2y_s + jz_2 - j(y_2 + y_e y_e z_2) + jy_e z_2}$$

$$s_{12} = \frac{2}{jz_2y_s + jz_2 - j(y_2 + y_e y_e z_2) + jy_e z_2}$$

$$s_{12} = \frac{2}{jz_2y_s + jz_2 - j(y_2 + y_e y_e z_2) + jy_e z_2}$$

$$s_{12} = \frac{2}{jz_2y_s + jz_2 - j(y_2 + y_e y_e z_2) + jy_e z_2}$$

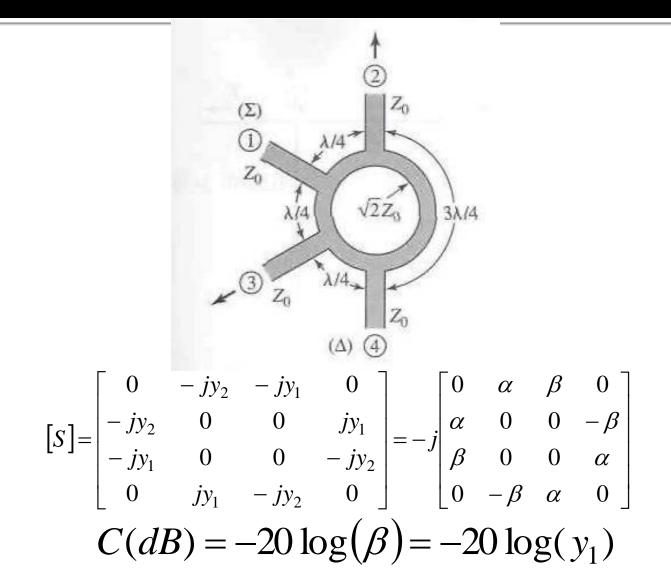
$$s_{22} = \frac{2}{jz_2y_s + jz_2 - j(y_2 + y_e y_e z_2) + jy_e z_2}$$

$$s_{22} = \frac{2}{jz_2y_s + jz_2 - j(y_2 + y_e y_e z_2) + jy_e z_2}$$

$$s_{22} = \frac{2}{jz_2y_s + jz_2 - j(y_e z_2 + y_e y_e z_2) + jy_e z_2}$$

$$s_{22} = \frac{2}$$

The 180° ring hybrid



Example

Design a ring (180°) hybrid working on 50 Ω , and plot the S parameters between 0.5 and 1.5 of the design frequency.

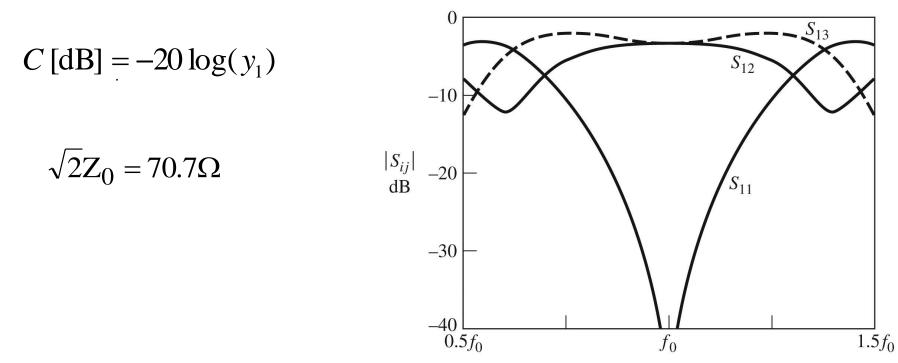
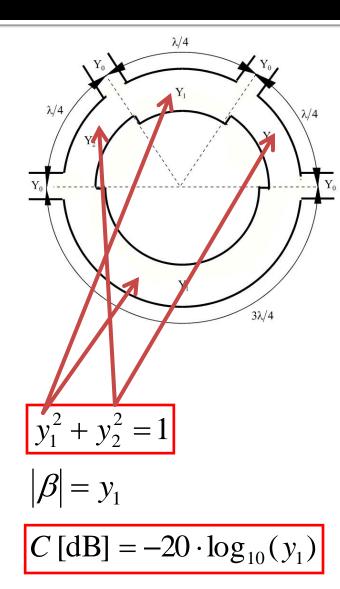


Figure 7.46 © John Wiley & Sons, Inc. All rights reserved.

The 180° ring hybrid



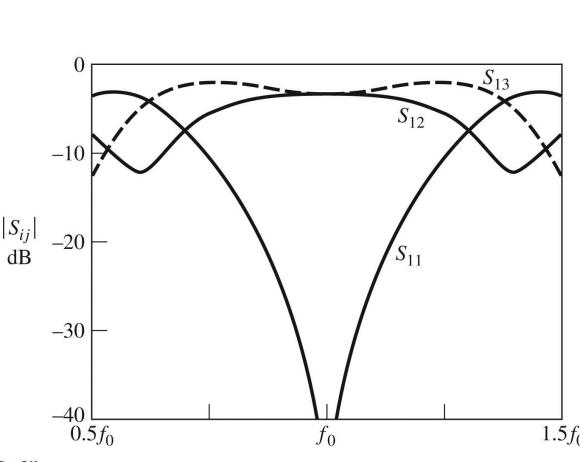


Figure 7.46 © John Wiley & Sons, Inc. All rights reserved.

The 180° ring hybrid

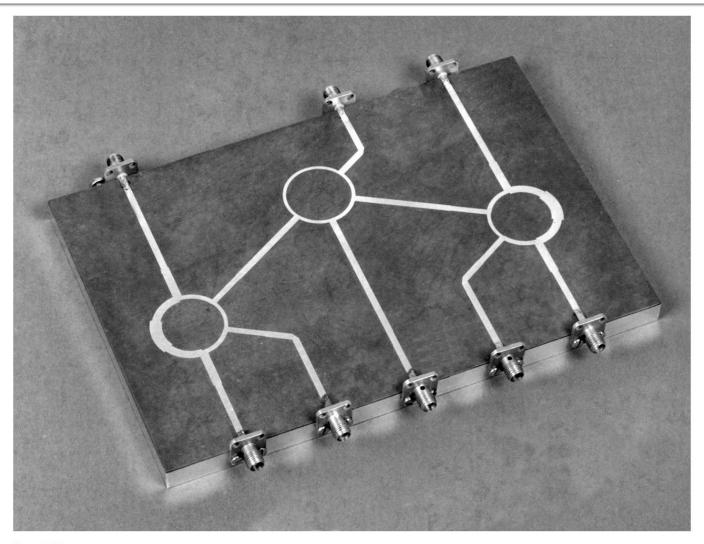
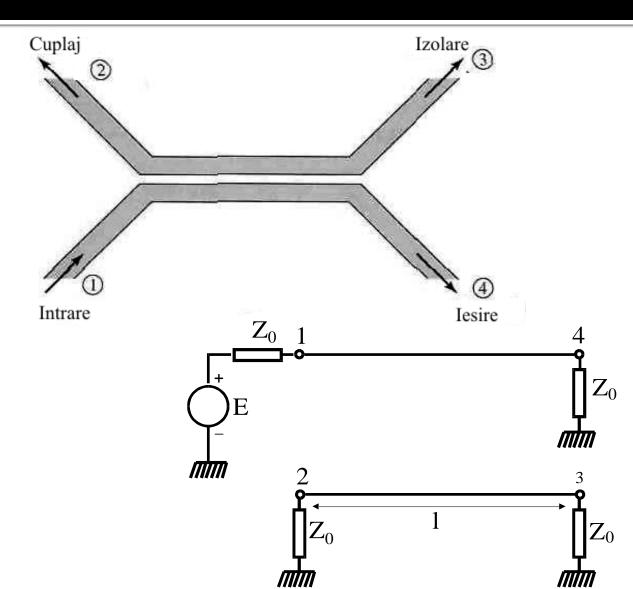


Figure 7.43 Courtesy of M. D. Abouzahra, MIT Lincoln Laboratory, Lexington, Mass.

Coupled Line Coupler



Coupled Lines

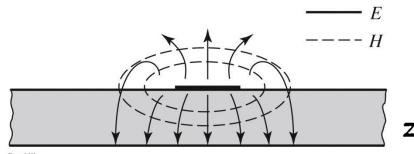
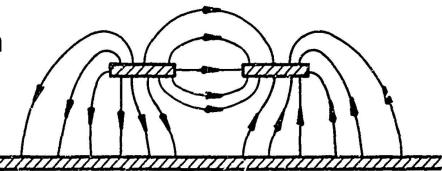


Figure 3.25b © John Wiley & Sons, Inc. All rights reserved

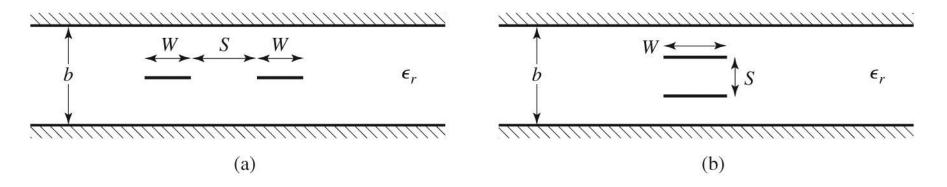
- Even mode characterizes the common mode signal on the two lines
- Odd mode characterizes the differential mode signal between the two lines
- Each of the two modes is characterized by different characteristic impedances



c) ODD MODE ELECTRIC FIELD PATTERN (SCHEMATIC)

b) EVEN MODE ELECTRIC FIELD PATTERN (SCHEMATIC)

Coupled Lines



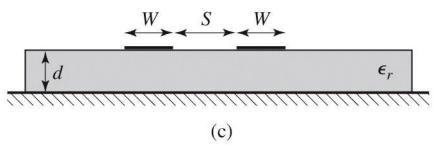


Figure 7.26 © John Wiley & Sons, Inc. All rights reserved.

Coupled Lines

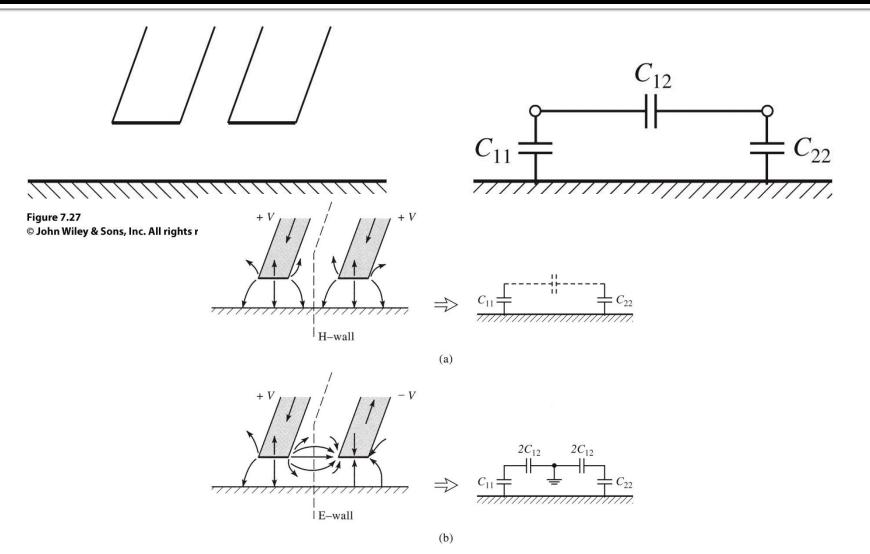
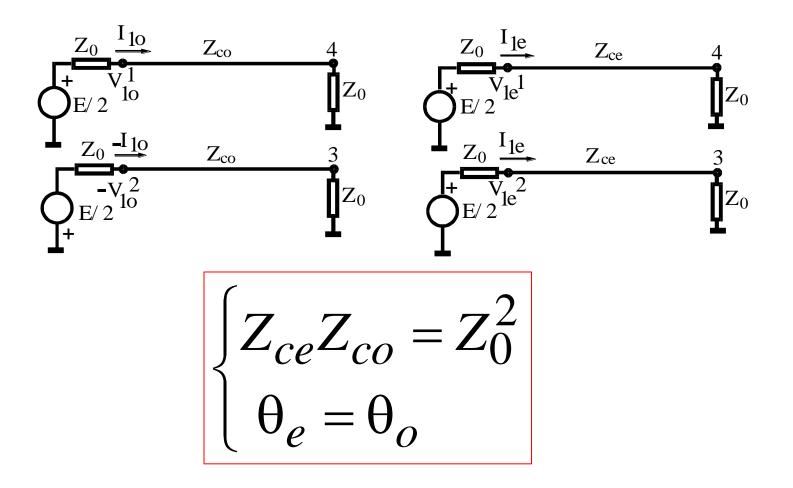
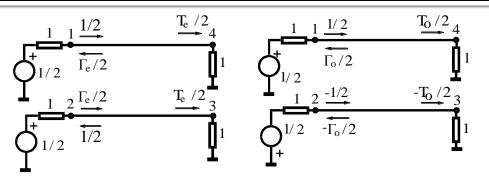


Figure 7.28 © John Wiley & Sons, Inc. All rights reserved.

Matching in Coupled Line Coupler



Directivity and Coupling factor



modul par

modul impar

$$a_{1} = a_{1e} + a_{1o} = 1, a_{2} = a_{3} = a_{4} = 0$$

$$b_{1} = \frac{1}{2} (\Gamma_{e} + \Gamma_{o}) = 0 \Leftrightarrow$$

$$b_{2} = \frac{1}{2} (\Gamma_{e} - \Gamma_{o}) = \frac{jC\sin(\theta)}{\cos(\theta)\sqrt{1 - C^{2}} + j\sin(\theta)}$$

$$b_{3} = \frac{1}{2} (T_{e} - T_{o}) = 0$$

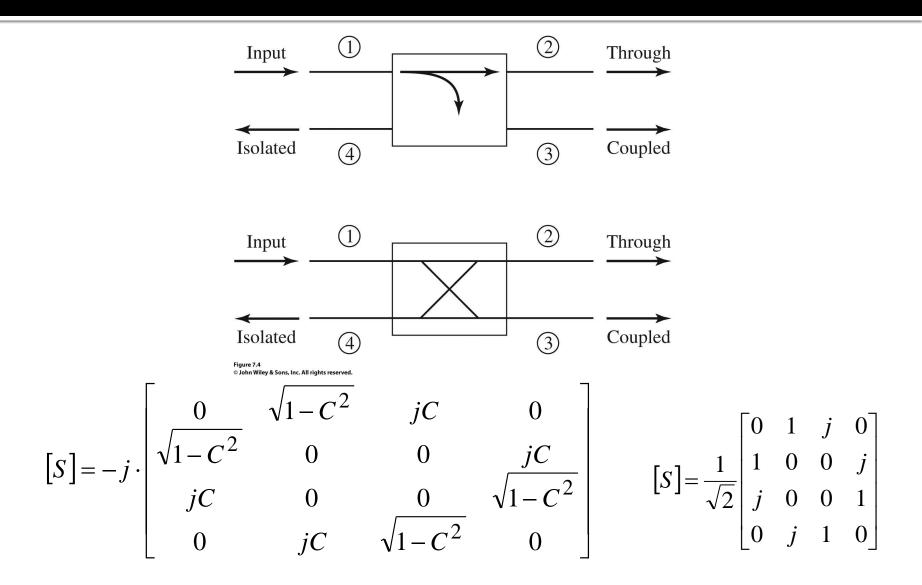
$$b_{4} = \frac{1}{2} (T_{e} + T_{o}) = \frac{\sqrt{1 - C^{2}}}{\cos(\theta)\sqrt{1 - C^{2}} + j\sin(\theta)}$$

$$C = \frac{Z_{ce} - Z_{co}}{Z_{ce} + Z_{co}}$$

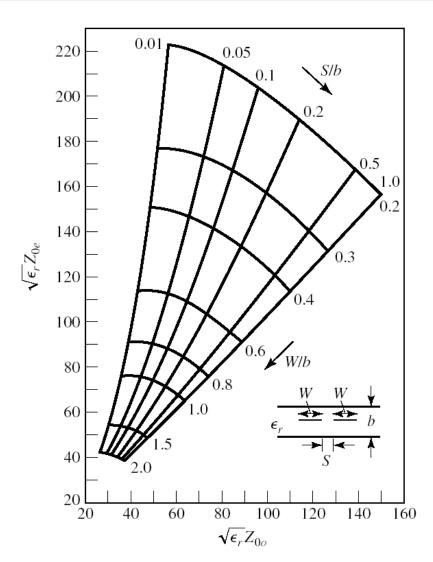
$$\theta = \pi/2$$

$$[S] = \begin{bmatrix} 0 & C & 0 & -j\sqrt{1-C^2} \\ C & 0 & -j\sqrt{1-C^2} & 0 \\ 0 & -j\sqrt{1-C^2} & 0 & C \\ -j\sqrt{1-C^2} & 0 & C & 0 \end{bmatrix}$$

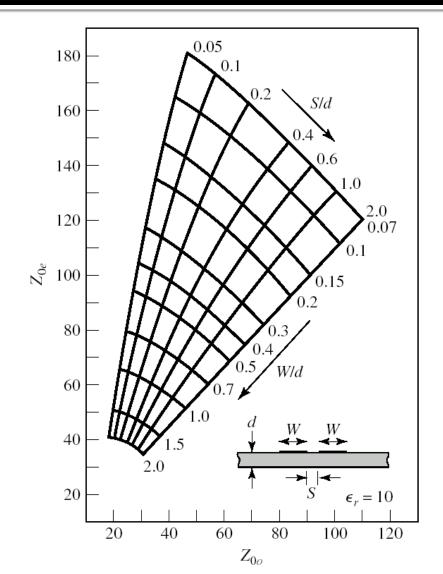
Coupled Line Coupler



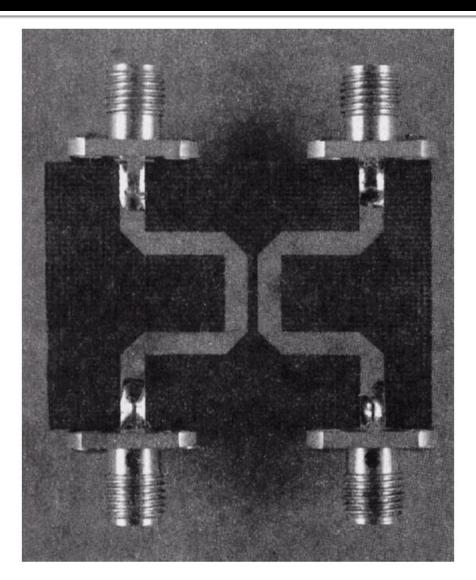
Normalized even- and odd-mode characteristic impedance design data for edge-coupled striplines.



Even- and odd-mode characteristic impedance design data for coupled microstrip lines on a substrate with $\varepsilon_r = 10$.



Coupled Line Coupler



Coupled Line Coupler

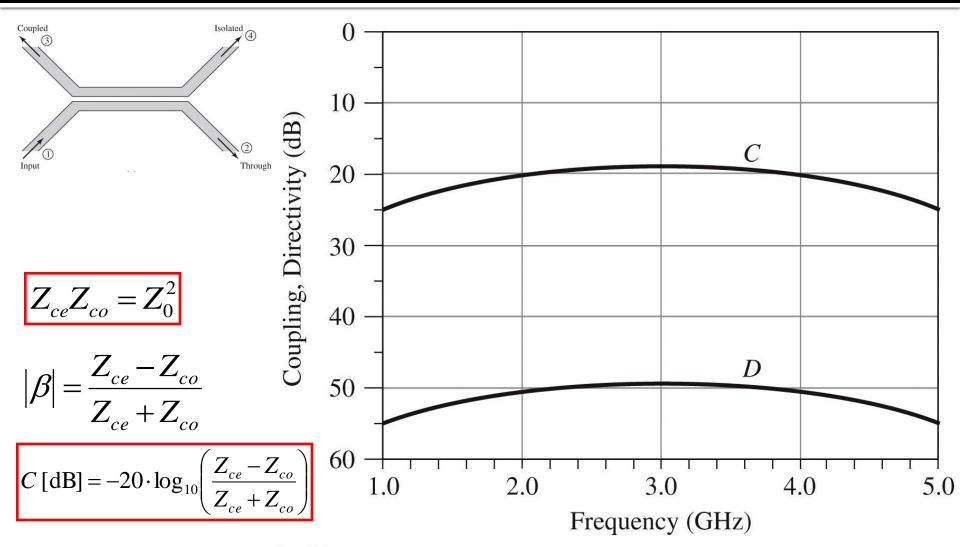
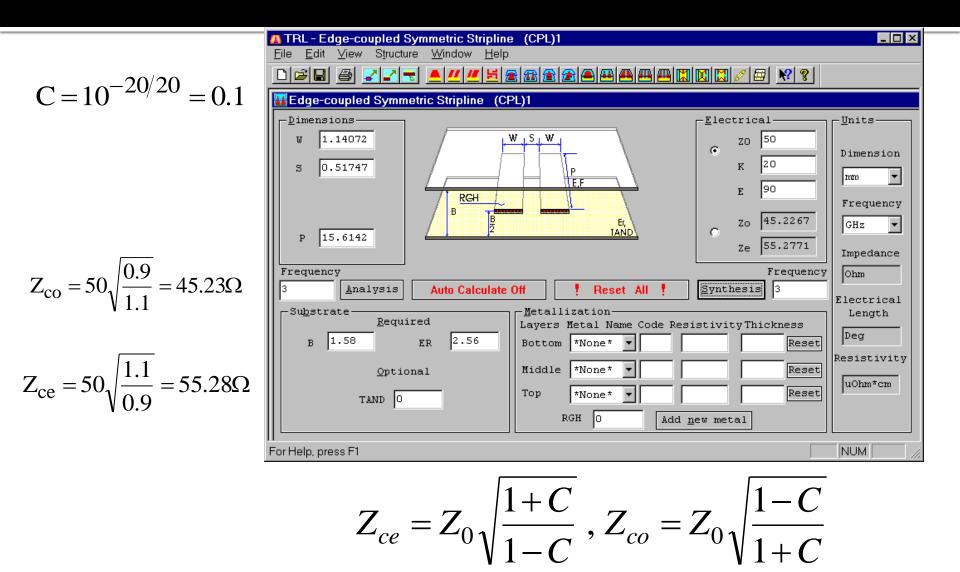


Figure 7.34 © John Wiley & Sons, Inc. All rights reserved.

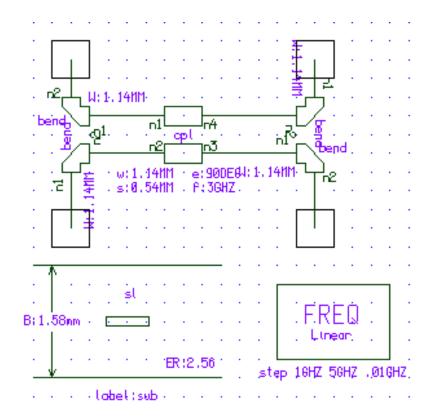
Example

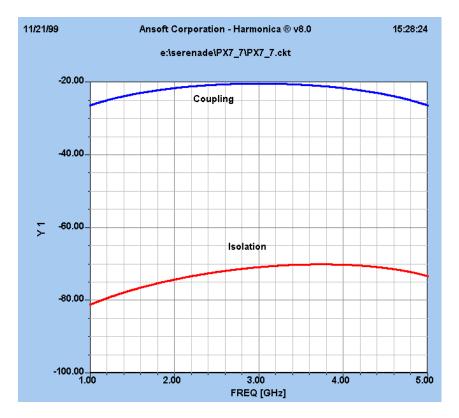
Design a coupled line coupler with 20 dB coupling factor, using stripline technology, with a distance between ground planes of 0.158 cm and an electrical permittivity of 2.56, working on 50 Ω , at the design frequency of 3 GHz. Plot the coupling and directivity between 1 and 5 GHz.

Solution

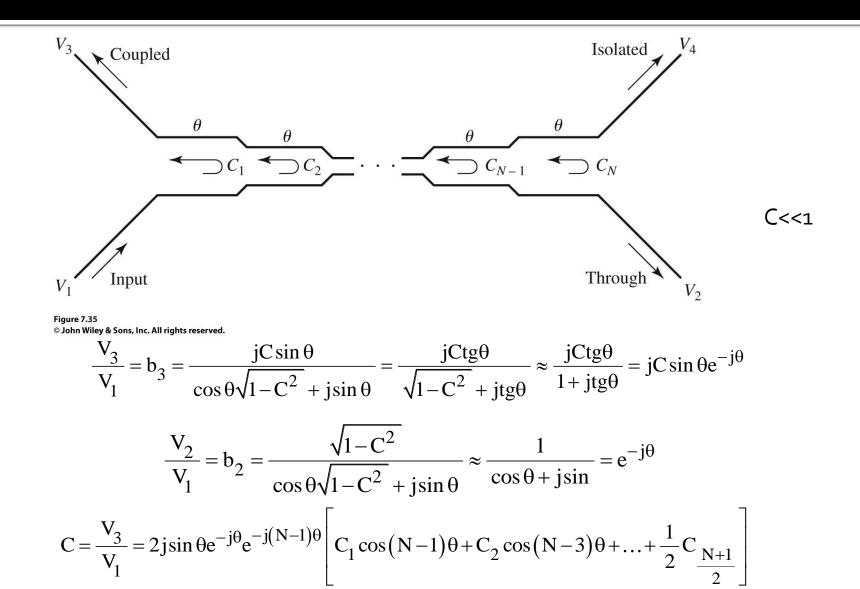


Simulation





Multisection Coupled Line Couplers



Example

Design a three sections coupled line coupler with 20 dB coupling factor, binomial characteristic (maximum flat), working on 50Ω , at the design frequency of 3 GHz. Plot the coupling and directivity between 1 and 5 GHz

Solution

$$\frac{d^{n}}{d\theta^{n}}C(\theta)\Big|_{\theta=\pi/2} = 0, n = 1,2$$

$$C = \left|\frac{V_{3}}{V_{1}}\right| = 2\sin\theta \Big[C_{1}\cos2\theta + \frac{1}{2}C_{2}\Big] = C_{1}(\sin3\theta - \sin\theta) + C_{2}\sin\theta$$

$$\frac{dC}{d\theta} = \Big[3C_{1}\cos3\theta + (C_{2} - C_{1})\cos\theta\Big]\Big|_{\theta=\pi/2} = 0$$

$$Z_{0e}^{1} = Z_{0e}^{3} = 50\sqrt{\frac{1.0125}{0.9875}} = 50.63\Omega$$

$$\frac{d^{2}C}{d\theta^{2}} = \Big[-9C_{1}\sin3\theta - (C_{2} - C_{1})\sin\theta\Big]\Big|_{\theta=\pi/2} = 10C_{1} - C_{2} = 0$$

$$Z_{0o}^{1} = Z_{0o}^{3} = 50\sqrt{\frac{0.9875}{1.0125}} = 49.38\Omega$$

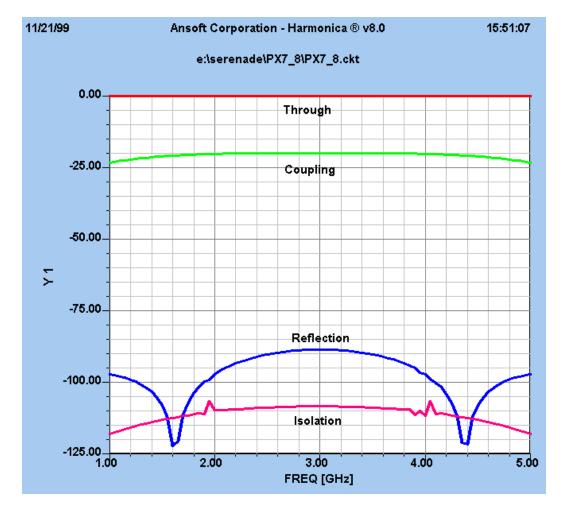
$$\begin{cases} C_{2} - 2C_{1} = 0.1\\ 10C_{1} - C_{2} = 0 \end{cases}$$

$$Z_{0e}^{2} = 50\sqrt{\frac{1.125}{0.875}} = 56.69\Omega$$

$$\begin{cases} C_{1} = C_{3} = 0.0125\\ C_{2} = 0.125 \end{cases}$$

$$Z_{0o}^{2} = 50\sqrt{\frac{0.875}{1.125}} = 44.10\Omega$$

Simulare



The Lange Coupler

allows achieving coupling factors of 3 or 6 dB

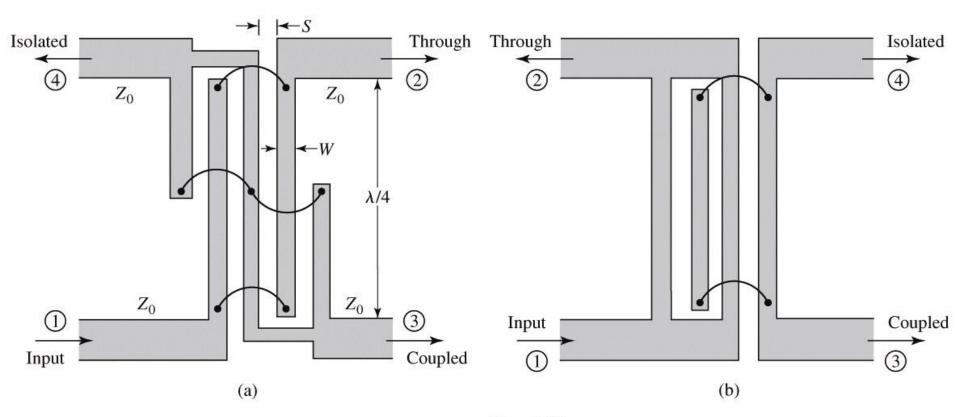


Figure 7.38 © John Wiley & Sons, Inc. All rights reserved.

The Lange Coupler

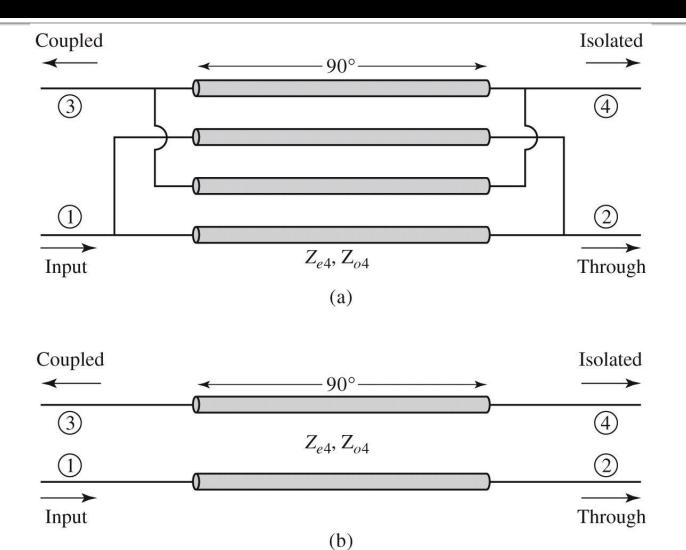
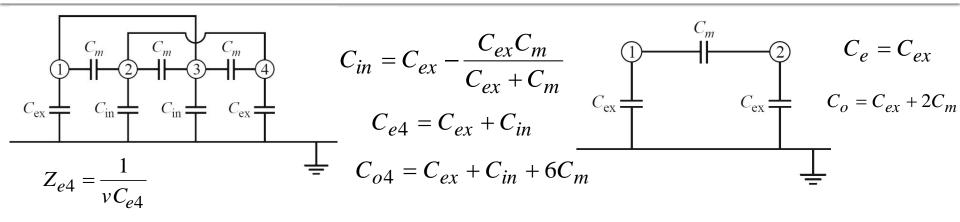


Figure 7.39 © John Wiley & Sons, Inc. All rights reserved.

Circuit model



$$Z_{o4} = \frac{1}{vC_{o4}}$$

$$Z_0 = \sqrt{Z_{e4} Z_{o4}} = \sqrt{\frac{Z_{0e} Z_{0o} (Z_{0o} + Z_{0e})^2}{(3Z_{0o} + Z_{0e})(3Z_{0e} + Z_{0o})}}$$

$$C_{e4} = \frac{C_e (3C_e + C_o)}{C_e + C_o}$$
$$C_{o4} = \frac{C_o (3C_o + C_e)}{C_e + C_o}$$

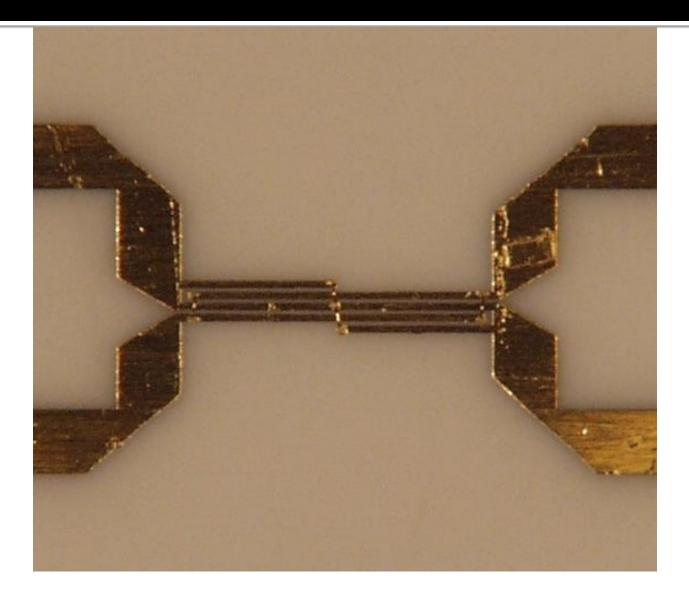
$$Z_{e4} = Z_{0e} \frac{Z_{0e} + Z_{0o}}{3Z_{0o} + Z_{0e}}$$
$$Z_{o4} = Z_{0o} \frac{Z_{0e} + Z_{0o}}{3Z_{0e} + Z_{0o}}$$

$$C = \frac{Z_{e4} - Z_{o4}}{Z_{e4} + Z_{o4}} = \frac{3(Z_{0e}^2 - Z_{0o}^2)}{3(Z_{0e}^2 + Z_{0o}^2) + 2Z_{0e}Z_{0o}}$$

$Z_{0e} =$	$\frac{4C-3+\sqrt{9-8C^2}}{7}$	
	$\frac{1}{2C\sqrt{(1-C)/(1+C)}} Z_0^{(1-C)/(1+C)}$	

$$Z_{0o} = \frac{4C + 3 - \sqrt{9 - 8C^2}}{2C\sqrt{(1 + C)/(1 - C)}} Z_0$$

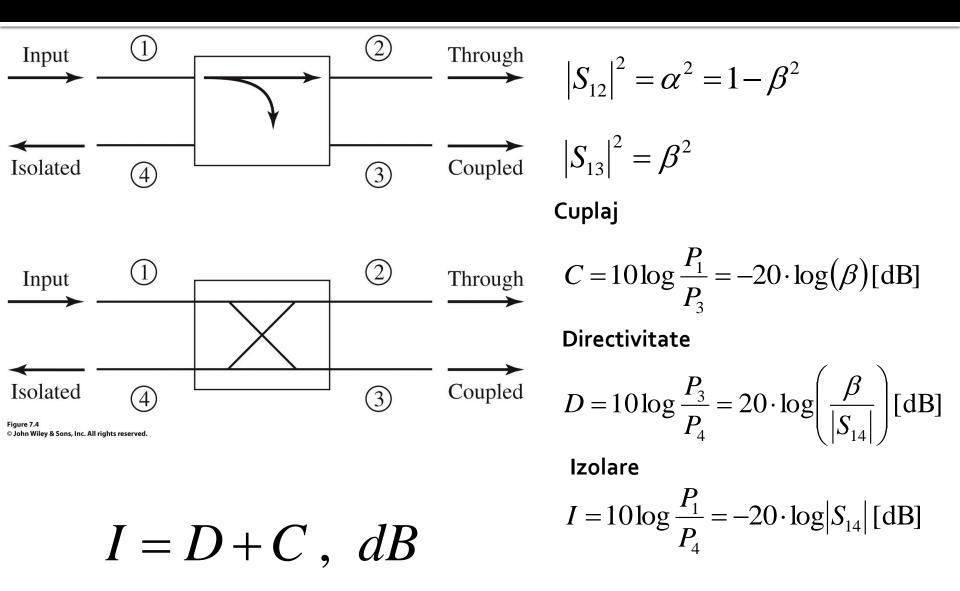
The Lange Coupler



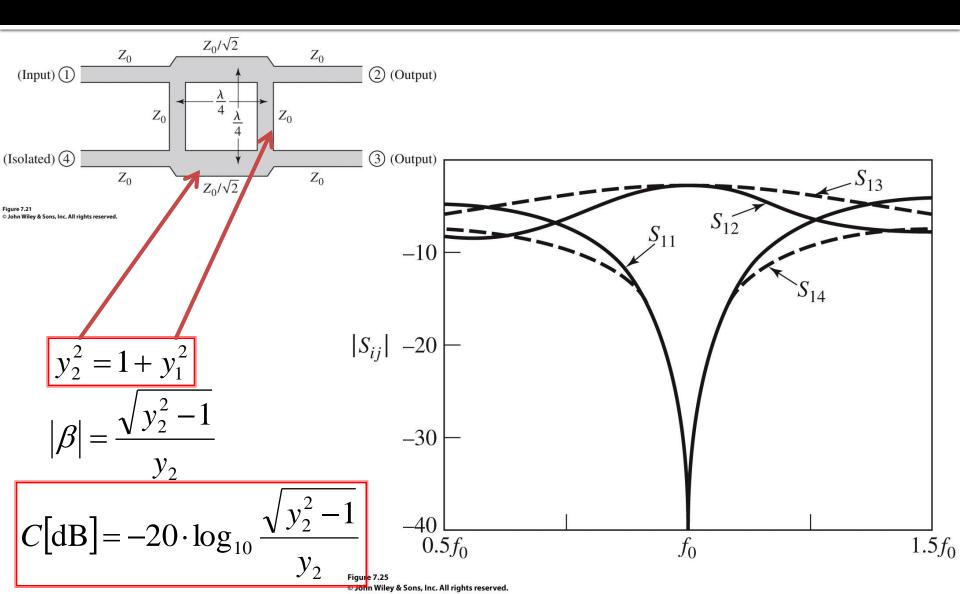
Directional Couplers

Laboratory no. 2

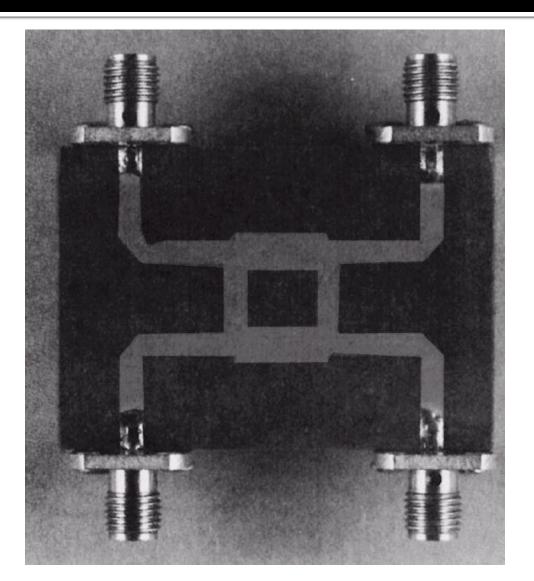
Directional Coupler



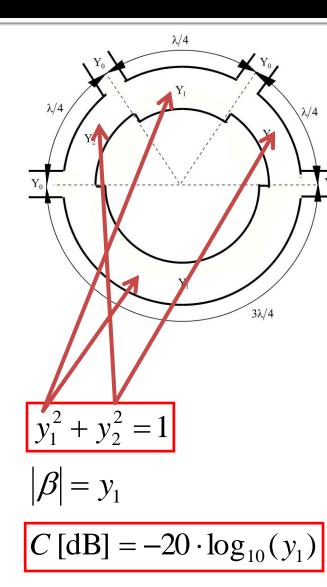
The cuadrature (90°) hybrid



Quadrature coupler



The 180° ring hybrid (rat-race)



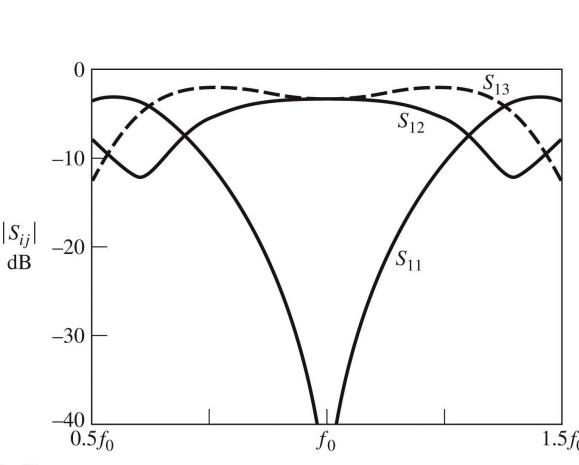
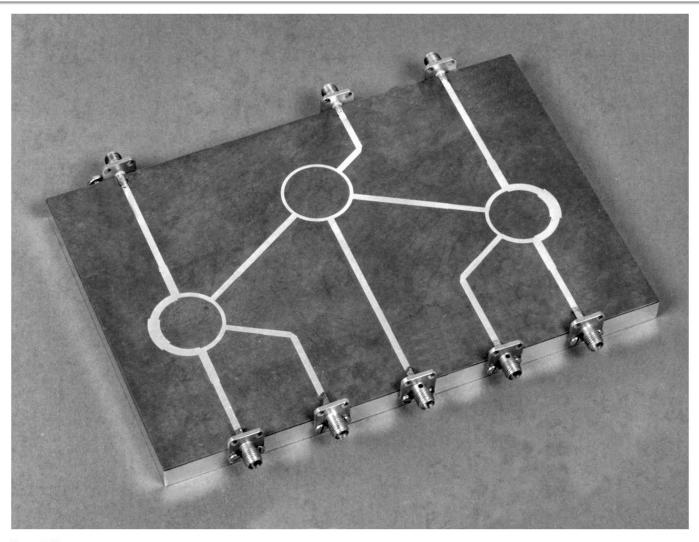


Figure 7.46 © John Wiley & Sons, Inc. All rights reserved.

Ring coupler



Coupled Line Coupler

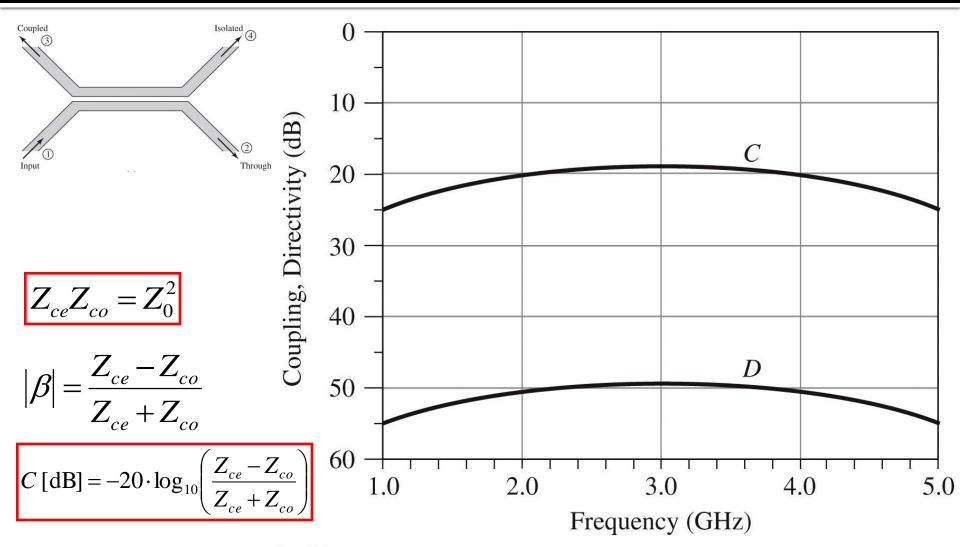
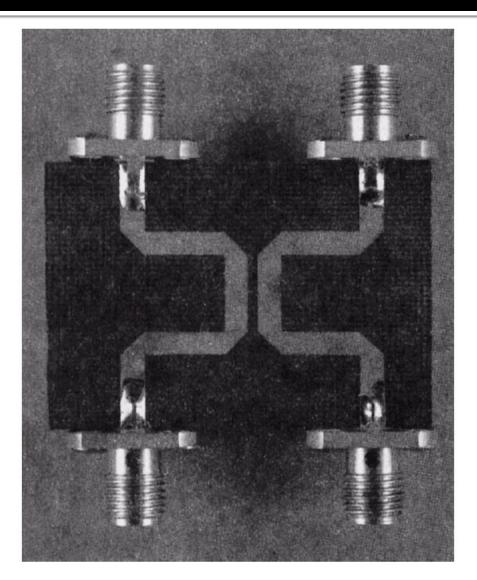


Figure 7.34 © John Wiley & Sons, Inc. All rights reserved.

Coupled line coupler



- Microwave and Optoelectronics Laboratory
- http://rf-opto.etti.tuiasi.ro
- rdamian@etti.tuiasi.ro